64 resultados para Alkali-labile phosphate
Resumo:
Objectives: We tested the effects of the three forms of basic calcium phosphate (BCP) crystals (octacalcium phosphate (OCP), carbonate-substituted apatite (CA) and hydroxyapatite (HA)) on monocytes and macrophages on IL-1β secretion. The requirement for the NALP3 inflammasome and TLR2 and TLR4 receptors in this acute response was analyzed.
Resumo:
Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.
Resumo:
The Puklen complex of the Mid-Proterozoic Gardar Province, South Greenland, consists of various silica-saturated to quartz-bearing syenites, which are intruded by a peralkaline granite. The primary mafic minerals in the syenites are augite +/- olivine + Fe-Ti oxide + amphibole. Ternary feldspar thermometry and phase equilibria among mafic silicates yield T = 950-750degreesC, a(SiO2) = 0.7-1 and an f(O2) of 1-3 log units below the fayalite-magnetite-quartz (FMQ) buffer at 1 kbar. In the granites, the primary mafic minerals are ilmenite and Li-bearing arfvedsonite, which crystallized at temperatures below 750degreesC and at f(O2) values around the FMQ buffer. In both rock types, a secondary post-magmatic assemblage overprints the primary magmatic phases. In syenites, primary Ca-bearing minerals are replaced by Na-rich minerals such as aegirine-augite and albite, resulting in the release of Ca. Accordingly, secondary minerals include ferro-actinolite, (calcite-siderite)(ss), titanite and andradite in equilibrium with the Na-rich minerals. Phase equilibria indicate that formation of these minerals took place over a long temperature interval from near-magmatic temperatures down to similar to300degreesC. In the course of this cooling, oxygen fugacity rose in most samples. For example, late-stage aegirine in granites formed at the expense of arfvedsonite at temperatures below 300degreesC and at an oxygen fugacity above the haematite-magnetite (HM) buffer. The calculated delta(18)O(melt) value for the syenites (+5.9 to +6.3parts per thousand) implies a mantle origin, whereas the inferred delta(18)O(melt) value of <+5.1parts per thousand for the granitic melts is significantly lower. Thus, the granites require an additional low-delta(18)O contaminant, which was not involved in the genesis of the syenites. Rb/Sr data for minerals of both rock types indicate open-system behaviour for Rb and Sr during post-magmatic metasomatism. Neodymium isotope compositions (epsilonNd(1170 Ma) = -3.8 to -6.4) of primary minerals in syenites are highly variable, and suggest that assimilation of crustal rocks occurred to variable extents. Homogeneous epsilon(Nd) values of -5.9 and -6.0 for magmatic amphibole in the granites lie within the range of the syenites. Because of the very similar neodymium isotopic compositions of magmatic and late- to post-magmatic minerals from the same syenite samples a principally closed-system behaviour during cooling is implied. In contrast, for the granites an externally derived fluid phase is required to explain the extremely low epsilon(Nd) values of about -10 and low delta(18)O between +2.0 and +0.5parts per thousand for late-stage aegirine, indicating an open system in the late-stage history. In this study we show that the combination of phase equilibria constraints with stable and radiogenic isotope data on mineral separates can provide much better constraints on magma evolution during emplacement and crystallization than conventional whole-rock studies.
Resumo:
Phosphate is a crucial and often limiting nutrient for plant growth. To obtain inorganic phosphate (P(i) ), which is very insoluble, and is heterogeneously distributed in the soil, plants have evolved a complex network of morphological and biochemical processes. These processes are controlled by a regulatory system triggered by P(i) concentration, not only present in the medium (external P(i) ), but also inside plant cells (internal P(i) ). A 'split-root' assay was performed to mimic a heterogeneous environment, after which a transcriptomic analysis identified groups of genes either locally or systemically regulated by P(i) starvation at the transcriptional level. These groups revealed coordinated regulations for various functions associated with P(i) starvation (including P(i) uptake, P(i) recovery, lipid metabolism, and metal uptake), and distinct roles for members in gene families. Genetic tools and physiological analyses revealed that genes that are locally regulated appear to be modulated mostly by root development independently of the internal P(i) content. By contrast, internal P(i) was essential to promote the activation of systemic regulation. Reducing the flow of P(i) had no effect on the systemic response, suggesting that a secondary signal, independent of P(i) , could be involved in the response. Furthermore, our results display a direct role for the transcription factor PHR1, as genes systemically controlled by low P(i) have promoters enriched with P1BS motif (PHR1-binding sequences). These data detail various regulatory systems regarding P(i) starvation responses (systemic versus local, and internal versus external P(i) ), and provide tools to analyze and classify the effects of P(i) starvation on plant physiology.
Resumo:
In the corpus callosum of the cat, the heavy subunit of neurofilaments (NFH) can be demonstrated with the monoclonal antibody NE14, as early as P11, not at P3, and only in a few axons. At P18-19 and more markedly at P29, many more callosal axons have become positive to NE14 and this is similar to what is found in the adult. In contrast, callosal axons become positive to the neurofilament antibody SMI-32 only between P29 and P39 and remain positive in the adult. Treatment with alkaline phosphatase prevents axonal staining with NE14, but results in SMI-32 staining of a few callosal axons as early as P11, but not at P3. Between P11 and P19 the number of axons stained with SMI-32 after alkaline phosphatase treatment increases, in parallel with that of axons stained with NE14. Thus NE14 appears to recognize a phosphorylated form of NFH, while SMI-32 appears to recognize an epitope of NFH which is either masked by phosphate or inaccessible until between P29 and P39, unless the tissue is treated with alkaline phosphatase. These two forms of NFH appear towards the end of the period of massive developmental elimination of callosal axons. They are also synchronous with changes in the spacing of neurofilaments quantified in a separate ultrastructural study. These cytoskeletal changes may terminate the juvenile-labile state of callosal axons and allow further axial growth of the axon.
Resumo:
Phosphate homeostasis in multicellular eukaryotes depends on both phosphate influx and efflux. The mammalian Xenotropic Polytropic Virus Receptor 1 (XPR1) shares homology to the Arabidopsis PHO1, a phosphate exporter expressed in roots. However, phosphate export activity of XPR1 has not yet been demonstrated in a heterologous system. Here, wedemonstrate that transient expression in tobacco leaves of XPR1-GFP leads to specific phosphate export. Like PHO1-GFP, XPR1-GFP is localized predominantly to the endomembrane system in tobacco cells. These results show that tobacco leaves are a good heterologous system to study the transport activity of members of the PHO1/XPR1 family.
Resumo:
To study the role of early energetic abnormalities in the subsequent development of heart failure, we performed serial in vivo combined magnetic resonance imaging (MRI) and (31)P magnetic resonance spectroscopy (MRS) studies in mice that underwent pressure-overload following transverse aorta constriction (TAC). After 3 wk of TAC, a significant increase in left ventricular (LV) mass (74 +/- 4 vs. 140 +/- 26 mg, control vs. TAC, respectively; P < 0.000005), size [end-diastolic volume (EDV): 48 +/- 3 vs. 61 +/- 8 microl; P < 0.005], and contractile dysfunction [ejection fraction (EF): 62 +/- 4 vs. 38 +/- 10%; P < 0.000005] was observed, as well as depressed cardiac energetics (PCr/ATP: 2.0 +/- 0.1 vs. 1.3 +/- 0.4, P < 0.0005) measured by combined MRI/MRS. After an additional 3 wk, LV mass (140 +/- 26 vs. 167 +/- 36 mg; P < 0.01) and cavity size (EDV: 61 +/- 8 vs. 76 +/- 8 microl; P < 0.001) increased further, but there was no additional decline in PCr/ATP or EF. Cardiac PCr/ATP correlated inversely with end-systolic volume and directly with EF at 6 wk but not at 3 wk, suggesting a role of sustained energetic abnormalities in evolving chamber dysfunction and remodeling. Indeed, reduced cardiac PCr/ATP observed at 3 wk strongly correlated with changes in EDV that developed over the ensuing 3 wk. These data suggest that abnormal energetics due to pressure overload predict subsequent LV remodeling and dysfunction.
Resumo:
Elevated serum phosphorus, calcium, and fibroblast growth factor 23 (FGF23) levels are associated with cardiovascular disease in chronic renal disease. This study evaluated the effects of sucroferric oxyhydroxide (PA21), a new iron-based phosphate binder, versus lanthanum carbonate (La) and sevelamer carbonate (Se), on serum FGF23, phosphorus, calcium, and intact parathyroid hormone (iPTH) concentrations, and the development of vascular calcification in adenine-induced chronic renal failure (CRF) rats. After induction of CRF, renal function was significantly impaired in all groups: uremic rats developed severe hyperphosphatemia, and serum iPTH increased significantly. All uremic rats (except controls) then received phosphate binders for 4 weeks. Hyperphosphatemia and increased serum iPTH were controlled to a similar extent in all phosphate binder-treatment groups. Only sucroferric oxyhydroxide was associated with significantly decreased FGF23. Vascular calcifications of the thoracic aorta were decreased by all three phosphate binders. Calcifications were better prevented at the superior part of the thoracic and abdominal aorta in the PA21 treated rats. In adenine-induced CRF rats, sucroferric oxyhydroxide was as effective as La and Se in controlling hyperphosphatemia, secondary hyperparathyroidism, and vascular calcifications. The role of FGF23 in calcification remains to be confirmed.
Resumo:
Acquisition of phosphate from the soil and its distribution across plant tissues, as well as between the cytosol and organelles, is dependent on an array of transporters, which include proton-phosphate cotransporters belonging to the family of PHT proteins, the PHO1 phosphate exporter, as well as organellar phosphate exchangers. The expression of these transporters is regulated both at the transcriptional and post-transcriptional levels, and their activity and localisation is controlled by modifications such as phosphorylation and ubiquitination. Proteins including the PHR1 and WRKY6 transcription factors, PHO2 and NLA involved in ubiquitination, as well as SPX proteins, form a network which enables plants to regulate phosphate transport activity under both nutrient-sufficient and -deficient conditions, allowing them to survive, grow and produce seeds under adverse conditions.
Resumo:
L'arthrose est une maladie dégénérative des articulations due à une dégradation progressive du cartilage. La calcification de l'articulation (essentiellement due à des dépôts de cristaux de phosphate de calcium basique -cristaux BCP-) est une caractéristique de cette maladie. Cependant, le rôle des cristaux BCP reste à déterminer. Nous avons tout d'abord déterminé en utilisant des cultures primaires de chondrocytes que les cristaux de BCP induisaient la production de la cytokine IL-6, via une signalisation intracellulaire implicant les kinase Syk, PI3 et Jak et Stat3. Les cristaux de BCP induisent également la perte de protéoglycanes et l'expression de IL-6 dans des explants de cartlage humain et ces deux effets peuvent être bloqués par un inhibiteur de IL-6, le Tocilizumab. Par ailleurs, nous avons trouvé que l'IL-6 ajouté à des chondrocytes, favorisait la formation de cristax de BCP et augmentait l'expression de gènes impliqués dans le processus de minéralisation : Ank (codant pour un transporteur de pyrophooshate), Annexin5 (codant pour un canal calcique) et Pit-1 (codant pour un transporteur de phoshate). In vivo, les cristaux de BCP injectés dans l'articulation de souris induisent une érosion du cartilage. Dans un modèle murin d'arthrose du genou induit par ménisectomie, nous avons observé la formation progressive de cristaux de BCP. Fait intéressant, la présence de ces cristaux dans l'articulation précédait la destruction du cartilage. Un agent susceptible de bloquer les calcifications tel que le sodium thiosulfate (STS), administré à des souris ménisectomisées, inhibait le dépôt intra-articulaire de ces cristaux ainsi que l'érosion du cartilage. Nous avons identifié ainsi un cercle vicieux dans l'arthrose, les cristaux induisant l'interleukine-6 et l'interleukine-6 induisant la formation de ces cristaux. Nous avons étudié si on pouvait bloquer cette boucle cristaux de BCP-IL6 soit par des agents décalcifiants, soit par des inhibiteurs d'IL-6. In vitro, des anticorps anti IL- 6 ou des inhibiteurs de signalisation, inhibaient significativement IL-6 et la minéralisation induite par IL-6. De même le STS inhibait la formation de ces cristaux et la production de l'IL-6. Tout récemment, nous avons trouvé que des inhibiteurs de la xanthine oxidoréductase étaient aussi capables d'inhiber à la fois la production d'IL-6 et la minéralization des chondrocytes. Finalement, nous avons pu exclure un rôle du système IL-1 dans le modèle d'arthrose induite par ménisectomie, les souris déficientes pour IL-1a/ß, MyD88 et l'inflammasome NLRP3 n'étant pas protégées dans ce modèle d'arthrose. L'ensemble de nos résultats montre que les cristaux BCP sont pathogéniques dans l'arthrose et qu'un inhibiteur de minéralisation tel que le STS ou un inhibiteur de l'interleukine-6 constitueraient des nouvelles thérapies pour l'arthrose. -- Osteoarthritis (OA), the most common degenerative disorder of the joints, results from an imbalance between the breakdown and repair of the cartilage and surrounding articular structures. Joint calcification (essentially due to basic calcium phosphate (BCP) crystal deposition) is a characteristic feature of OA. However, the role of BCP crystal deposition in the pathogenesis of OA remains unclear[1][1]. We first demonstrated that in primary murine chondrocytes exogenous BCP crystals led to IL-6 up-modulation and that BCP crystal signaling pathways involved Syk and PI3 kinases, and also gp130 associated molecules, Jak2 and Stat3. BCP crystals also induced proteoglycan loss and IL-6 expression in human cartilage expiants, (which were significantly reduced by an IL-6 inhibitor). In addition, we found that in chondrocytes exogenous IL-6 promoted calcium-containing crystal formation and up- regulation of genes codifying for proteins involved in the calcification process: the inorganic pyrophosphate transport channel Ank, the calcium channel Annexinö and the sodium/phosphate cotransporter Piti. In vivo, BCP crystals injected into murine knee joints induced cartilage erosion. In the menisectomy model, increasing deposits, identified as BCP crystals, were progressively observed around the joint before cartilage erosion. These deposits strongly correlated with cartilage degradation and IL-6 expression. These results demonstrated that BCP crystals deposition and IL-6 production are mutually reinforcing in the osteoarthritic pathogenic process. We then investigated if we could block the BCP-IL6 loop by either targeting IL-6 production or BCP crystal deposits. Treatment of chondrocytes with anti-IL-6 antibodies or inhibitors of IL-6- signaling pathway significantly inhibited IL-6-induced crystal formation. Similarly, sodium thiosulfate (STS), a well-known systemic calcification inhibitor, decreased crystal deposition as well as HA-induced IL-6 secretion in chondrocytes and, in vivo, it decreased crystal deposits size and cartilage erosion in menisectomized knees. Interestingly, we also found that xanthine-oxidoreductase (XO) inhibitors inhibited both IL-6 production and calcium crystal depositis in chondrocytes. We began to unravel the mechanisms involved in this coordinate modulation of IL-6 and mineralization. STS inhibited Reactive Oxygen Species (ROS) generation and we are currently investigating whether XO represents a major source of ROS in chondrocyte mineralization. Finally, we ruled out that IL-1 activation/signaling plays a role in the murine model of OA induced by menisectomy, as IL-1a/ß, the IL-1 R associated molecule MyD88 and NLRP3 inflammasome deficient mice were not protected in this model of OA. Moreover TLR-1, -2, -4,-6 deficient mice had a phenotype similar to that of wild-type mice. Altogether our results demonstrated a self-amplification loop between BCP crystals deposition and IL-6 production, which represents an aggravating process in OA pathogenesis. As currently prescribed OA drugs are addressing OA symptoms,our results highlight a potential novel treatment strategy whereby inhibitors of calcium- containing crystal formation and IL-6 could be combined to form the basis of a disease modifying treatment and alter the course of OA.