189 resultados para 174-1073
Resumo:
Allogeneic MHC-incompatible organ or cell grafts are usually promptly rejected by immunocompetent hosts. Here we tested allogeneic beta-islet cell graft acceptance by immune or naive C57BL/6 mice rendered diabetic with streptozotocin (STZ). Fully MHC-mismatched insulin-producing growth-regulated beta-islet cells were transplanted under the kidney capsule or s.c. Although previously or simultaneously primed mice rejected grafts, STZ-treated diabetic mice accepted islet cell grafts, and hyperglycemia was corrected within 2-4 weeks in absence of conventional immunosuppression. Allogeneic grafts that controlled hyperglycemia expressed MHC antigens, were not rejected for >100 days, and resisted a challenge by allogeneic skin grafts or multiple injections of allogeneic cells. Importantly, the skin grafts were rejected in a primary fashion by the grafted and corrected host, indicating neither tolerization nor priming. Such strictly extralymphatic cell grafts that are immunologically largely ignored should be applicable clinically.
Resumo:
IMPORTANCE There is a high prevalence of obesity in psychiatric patients, possibly leading to metabolic complications and reducing life expectancy. The CREB-regulated transcription coactivator 1 (CRTC1) gene is involved in energy balance and obesity in animal models, but its role in human obesity is unknown. OBJECTIVE To determine whether polymorphisms within the CRTC1 gene are associated with adiposity markers in psychiatric patients and the general population. DESIGN, SETTING, AND PARTICIPANTS Retrospective and prospective data analysis and population-based samples at Lausanne and Geneva university hospitals in Switzerland and a private clinic in Lausanne, Switzerland. The effect of 3 CRTC1 polymorphisms on body mass index (BMI) and/or fat mass was investigated in a discovery cohort of psychiatric outpatients taking weight gain-inducing psychotropic drugs (sample 1, n = 152). The CRTC1 variant that was significantly associated with BMI and survived Bonferroni corrections for multiple comparison was then replicated in 2 independent psychiatric samples (sample 2, n = 174 and sample 3, n = 118) and 2 white population-based samples (sample 4, n = 5338 and sample 5, n = 123 865). INTERVENTION Noninterventional studies. MAIN OUTCOME AND MEASURE Difference in BMI and/or fat mass between CRTC1 genotype groups. RESULTS Among the CRTC1 variants tested in the first psychiatric sample, only rs3746266A>G was associated with BMI (Padjusted = .003). In the 3 psychiatric samples, carriers of the rs3746266 G allele had a lower BMI than noncarriers (AA genotype) (sample 1, P = .001; sample 2, P = .05; and sample 3, P = .0003). In the combined analysis, excluding patients taking other weight gain-inducing drugs, G allele carriers (n = 98) had a 1.81-kg/m2 lower BMI than noncarriers (n = 226; P < .0001). The strongest association was observed in women younger than 45 years, with a 3.87-kg/m2 lower BMI in G allele carriers (n = 25) compared with noncarriers (n = 48; P < .0001), explaining 9% of BMI variance. In the population-based samples, the T allele of rs6510997C>T (a proxy of the rs3746266 G allele; r2 = 0.7) was associated with lower BMI (sample 5, n = 123 865; P = .01) and fat mass (sample 4, n = 5338; P = .03). The strongest association with fat mass was observed in premenopausal women (n = 1192; P = .02). CONCLUSIONS AND RELEVANCE These findings suggest that CRTC1 contributes to the genetics of human obesity in psychiatric patients and the general population. Identification of high-risk subjects could contribute to a better individualization of the pharmacological treatment in psychiatry.
Resumo:
Increased resting energy expenditure and malnutrition are frequently observed in patients with COPD. The aim of this study was to examine the possible contribution of an increased diet-induced thermogenesis (DIT) to weight loss. Eleven patients with COPD in stable clinical state and 11 healthy control subjects were studied. Resting energy expenditure (REE) was measured by standard methods of indirect calorimetry, using a ventilated canopy. Premeal REE was measured after an overnight fast. All subjects then received a balanced liquid test meal with a caloric content that was 0.3 times their REE extrapolated to 24 h. Diet-induced thermogenesis was measured over 130 min. Premeal REE was 109.9 +/- 11.7% of predicted values in the COPD group and 97.5 +/- 9.6% of predicted in the control group (p < 0.01). Seventy minutes after the test meal, REE had increased by 18.8 +/- 8.5% in the COPD group and by 15.1 +/- 5.8% in the control group (NS). After 130 min, REE had increased by 16.4 +/- 7.1% in the COPD group and by 12.4 +/- 5.3% in the control group (NS). The DIT expressed as a percentage of the caloric content of the meal was 4.3 +/- 1.6% in the COPD group and 3.3 +/- 1.4% in the control group (NS). We conclude that patients with stable COPD, although hypermetabolic at rest, do not show an increased DIT.
Resumo:
Elevated plasma urate levels are associated with metabolic, cardiovascular, and renal diseases. Urate may also form crystals, which can be deposited in joints causing gout and in kidney tubules inducing nephrolithiasis. In mice, plasma urate levels are controlled by hepatic breakdown, as well as, by incompletely understood renal processes of reabsorption and secretion. Here, we investigated the role of the recently identified urate transporter, Glut9, in the physiological control of urate homeostasis using mice with systemic or liver-specific inactivation of the Glut9 gene. We show that Glut9 is expressed in the basolateral membrane of hepatocytes and in both apical and basolateral membranes of the distal nephron. Mice with systemic knockout of Glut9 display moderate hyperuricemia, massive hyperuricosuria, and an early-onset nephropathy, characterized by obstructive lithiasis, tubulointerstitial inflammation, and progressive inflammatory fibrosis of the cortex, as well as, mild renal insufficiency. In contrast, liver-specific inactivation of the Glut9 gene in adult mice leads to severe hyperuricemia and hyperuricosuria, in the absence of urate nephropathy or any structural abnormality of the kidney. Together, our data show that Glut9 plays a major role in urate homeostasis by its dual role in urate handling in the kidney and uptake in the liver.
Resumo:
Glucose production by liver is a major physiological function, which is required to prevent development of hypoglycemia in the postprandial and fasted states. The mechanism of glucose release from hepatocytes has not been studied in detail but was assumed instead to depend on facilitated diffusion through the glucose transporter GLUT2. Here, we demonstrate that in the absence of GLUT2 no other transporter isoforms were overexpressed in liver and only marginally significant facilitated diffusion across the hepatocyte plasma membrane was detectable. However, the rate of hepatic glucose output was normal. This was evidenced by (i) the hyperglycemic response to i.p. glucagon injection; (ii) the in vivo measurement of glucose turnover rate; and (iii) the rate of release of neosynthesized glucose from isolated hepatocytes. These observations therefore indicated the existence of an alternative pathway for hepatic glucose output. Using a [14C]-pyruvate pulse-labeling protocol to quantitate neosynthesis and release of [14C]glucose, we demonstrated that this pathway was sensitive to low temperature (12 degreesC). It was not inhibited by cytochalasin B nor by the intracellular traffic inhibitors brefeldin A and monensin but was blocked by progesterone, an inhibitor of cholesterol and caveolae traffic from the endoplasmic reticulum to the plasma membrane. Our observations thus demonstrate that hepatic glucose release does not require the presence of GLUT2 nor of any plasma membrane glucose facilitative diffusion mechanism. This implies the existence of an as yet unsuspected pathway for glucose release that may be based on a membrane traffic mechanism.
Resumo:
The epithelial amiloride-sensitive sodium channel (ENaC) controls transepithelial Na+ movement in Na(+)-transporting epithelia and is associated with Liddle syndrome, an autosomal dominant form of salt-sensitive hypertension. Detailed analysis of ENaC channel properties and the functional consequences of mutations causing Liddle syndrome has been, so far, limited by lack of a method allowing specific and quantitative detection of cell-surface-expressed ENaC. We have developed a quantitative assay based on the binding of 125I-labeled M2 anti-FLAG monoclonal antibody (M2Ab*) directed against a FLAG reporter epitope introduced in the extracellular loop of each of the alpha, beta, and gamma ENaC subunits. Insertion of the FLAG epitope into ENaC sequences did not change its functional and pharmacological properties. The binding specificity and affinity (Kd = 3 nM) allowed us to correlate in individual Xenopus oocytes the macroscopic amiloride-sensitive sodium current (INa) with the number of ENaC wild-type and mutant subunits expressed at the cell surface. These experiments demonstrate that: (i) only heteromultimeric channels made of alpha, beta, and gamma ENaC subunits are maximally and efficiently expressed at the cell surface; (ii) the overall ENaC open probability is one order of magnitude lower than previously observed in single-channel recordings; (iii) the mutation causing Liddle syndrome (beta R564stop) enhances channel activity by two mechanisms, i.e., by increasing ENaC cell surface expression and by changing channel open probability. This quantitative approach provides new insights on the molecular mechanisms underlying one form of salt-sensitive hypertension.
Resumo:
Sleep is regulated by a homeostatic process that determines its need and by a circadian process that determines its timing. By using sleep deprivation and transcriptome profiling in inbred mouse strains, we show that genetic background affects susceptibility to sleep loss at the transcriptional level in a tissue-dependent manner. In the brain, Homer1a expression best reflects the response to sleep loss. Time-course gene expression analysis suggests that 2,032 brain transcripts are under circadian control. However, only 391 remain rhythmic when mice are sleep-deprived at four time points around the clock, suggesting that most diurnal changes in gene transcription are, in fact, sleep-wake-dependent. By generating a transgenic mouse line, we show that in Homer1-expressing cells specifically, apart from Homer1a, three other activity-induced genes (Ptgs2, Jph3, and Nptx2) are overexpressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.
Resumo:
Mouse mammary tumor virus (MMTV) infection establishes chronic germinal centers and a lifelong neutralizing Ab response. We show that removal of the draining lymph node after establishment of the germinal center reaction led to complete loss of neutralizing Abs despite comparable infection levels in peripheral lymphocytes. Importantly, in the absence of neutralization, only the exocrine organs mammary gland, salivary gland, pancreas, and skin showed strikingly increased infection, resulting in accelerated mammary tumor development. Induction of stronger neutralization did not influence chronic infection levels of peripheral lymphoid organs but strongly inhibited mammary gland infection and virus transmission to the next generation. Taken together, we provide evidence that a tight equilibrium in virus neutralization allows limited infection of exocrine organs and controls cancer development in susceptible mouse strains. These experiments show that a strong neutralizing Ab response induced after infection is not able to control lymphoid MMTV infection. Strong neutralization, however, is capable of blocking amplification of mammary gland infection, tumor development, and virus transmission to the next generation. The results also indicate a role of neutralization in natural resistance to MMTV infection.
Resumo:
В статье будут рассмотрены два исследования русского и советского лингвиста Е.Д. Поливанова, посвященные фонетике «интеллигентского языка». В начале 1930-ч гг. Поливанов выдвинул новаторскую теорию языка, основанную на изучении социолектов и групповых диалектов русского языка современности. Язык интеллигенции - один из излюбленных предметов исследований лингвиста. Поливанов доказывает, что изменениям подвержен не только словарный запас, но и фонетика, и приводит конкретные примеры фонетических изменений, вызванных революцией.
Resumo:
While analyzing all available protein structures for the presence of knots and slipknots, we detected a strict conservation of complex knotting patterns within and between several protein families despite their large sequence divergence. Because protein folding pathways leading to knotted native protein structures are slower and less efficient than those leading to unknotted proteins with similar size and sequence, the strict conservation of the knotting patterns indicates an important physiological role of knots and slipknots in these proteins. Although little is known about the functional role of knots, recent studies have demonstrated a protein-stabilizing ability of knots and slipknots. Some of the conserved knotting patterns occur in proteins forming transmembrane channels where the slipknot loop seems to strap together the transmembrane helices forming the channel.
Resumo:
The ultrastructure of the membrane attack complex (MAC) of complement had been described as representing a hollow cylinder of defined dimensions that is composed of the proteins C5b, C6, C7, C8, and C9. After the characteristic cylindrical structure was identified as polymerized C9 [poly(C9)], the question arose as to the ultrastructural identity and topology of the C9-polymerizing complex C5b-8. An electron microscopic analysis of isolated MAC revealed an asymmetry of individual complexes with respect to their length. Whereas the length of one boundary (+/- SEM) was always 16 +/- 1 nm, the length of the other varied between 16 and 32 nm. In contrast, poly(C9), formed spontaneously from isolated C9, had a uniform tubule length (+/- SEM) of 16 +/- 1 nm. On examination of MAC-phospholipid vesicle complexes, an elongated structure was detected that was closely associated with the poly(C9) tubule and that extended 16-18 nm beyond the torus of the tubule and 28-30 nm above the membrane surface. The width of this structure varied depending on its two-dimensional projection in the electron microscope. By using biotinyl C5b-6 in the formation of the MAC and avidin-coated colloidal gold particles for the ultrastructural analysis, this heretofore unrecognized subunit of the MAC could be identified as the tetramolecular C5b-8 complex. Identification also was achieved by using anti-C5 Fab-coated colloidal gold particles. A similar elongated structure of 25 nm length (above the surface of the membrane) was observed on single C5b-8-vesicle complexes. It is concluded that the C5b-8 complex, which catalyzes poly(C9) formation, constitutes a structure of discrete morphology that remains as such identifiable in the fully assembled MAC, in which it is closely associated with the poly(C9) tubule.
Resumo:
mRNAs specifying immunoglobulin mu and delta heavy chains are encoded by a single large, complex transcription unit (mu + delta gene). The transcriptional activity of delta gene segments in terminally differentiated, IgM-secreting B lymphocytes is 10-20 times lower than in earlier B-lineage cells expressing delta mRNA. We find that transcription of the mu + delta gene in IgM-secreting murine myeloma cells terminates within a region of 500-1000 nucleotides immediately following the mu membrane (mu m) polyadenylylation site. Transcription decreases only minimally through this region in murine cell lines representative of earlier stages in B-cell development. A DNA fragment containing the mu m polyadenylylation signal gives protein-DNA complexes with different mobilities in gel retardation assays with nuclear extracts from myeloma cells than with nuclear extracts from earlier B-lineage cells. However, using a recently developed "footprinting" procedure in which protein-DNA complexes resolved in gel retardation assays are subjected to nucleolytic cleavage while still in the polyacrylamide gel, we find that the DNA sequences protected by factors from the two cell types are indistinguishable. The factor-binding site on the DNA is located 5' of the mu m polyadenylylation signal AATAAA and includes the 15-nucleotide-long A + T-rich palindrome CTGTAAACAAATGTC. This type of palindromic binding site exhibits orientation-dependent activity consistent with the reported properties of polymerase II termination signals. This binding site is followed by two sets of directly repeated DNA sequences with different helical conformation as revealed by their reactivity with the chemical nuclease 1,10-phenanthroline-copper. The close proximity of these features to the signals for mu m mRNA processing may reflect a linkage of the processes of developmentally regulated mu m polyadenylylation and transcription termination.