571 resultados para brain reconstruction
Resumo:
Post-lobectomy bronchovascular fistula (BVF) associated with massive hemoptysis is a rare but life-threatening complication. Surgical options include completion pneumonectomy or BVF resection with end-to-end anastomosis of the airways and reconstruction of the pulmonary artery (PA) by interposition of an appropriate substitute. We report PA resection and successful reconstruction by interposition of an autologous reversed superficial femoral vein (SFV) segment for this purpose.
Resumo:
BACKGROUND: Laparoscopic enucleation for neuroendocrine pancreatic tumors has become a feasible technique, with a reported incidence of pancreatic fistula ranging from 13 to 29 %.1 (-) 3 This report describes the first successful case of laparoscopic pancreatic enucleation with resection of the main pancreatic duct followed by end-to-end anastomosis. METHODS: A 41-year-old woman was admitted to the authors' hospital for repeated syncope. Hypoglycemia also was noted. A contrast-enhanced computed tomography examination showed a highly enhanced tumor measuring 22 mm in diameter on the ventral side of the pancreatic body adjacent to the main pancreatic duct. The patient's blood insulin level was elevated, and her diagnosis was determined to be pancreatic insulinoma. Laparoscopic pancreatic enucleation was performed. Approximately 2 cm of the main pancreatic duct was segmentally resected, and a short stent (Silicone tube: Silastic, Dow Corning Corporation, Midland, MI) was inserted. The direct anastomosis of the main pancreatic duct was performed using four separate sutures with an absorbable monofilament (6-0 PDS). RESULTS: The operation time was 166 min, and the estimated blood loss was 100 mL. The postoperative course was uneventful, and the patient was discharged from hospital on postoperative day 7. The pathologic findings showed a well-differentiated insulinoma and a negative surgical margin. A computed tomography examination performed 1 month after the operation showed a successful anastomosis with a patent main pancreatic duct. CONCLUSIONS: Laparoscopic segmental resection of the main pancreatic duct and end-to-end anastomosis can be performed safely with the insertion of a short stent. This technique also can be used for a central pancreatectomy.
Resumo:
BACKGROUND: Eight human catalytic phosphoinositide 3-kinase (PI3K) isoforms exist which are subdivided into three classes. While class I isoforms have been well-studied in cancer, little is known about the functions of class II PI3Ks. MATERIALS AND METHODS: The expression pattern and functions of the class II PI3KC2β isoform were investigated in a panel of tumour samples and cell lines. RESULTS: Overexpression of PI3KC2β was found in subsets of tumours and cell lines from acute myeloid leukemia (AML), glioblastoma multiforme (GBM), medulloblastoma (MB), neuroblastoma (NB), and small cell lung cancer (SCLC). Specific pharmacological inhibitors of PI3KC2β or RNA interference impaired proliferation of a panel of human cancer cell lines and primary cultures. Inhibition of PI3KC2β also induced apoptosis and sensitised the cancer cells to chemotherapeutic agents. CONCLUSION: Together, these data show that PI3KC2β contributes to proliferation and survival in AML, brain tumours and neuroendocrine tumours, and may represent a novel target in these malignancies.
Resumo:
In breast cancer, brain metastases are often seen as late complications of recurrent disease and represent a particularly serious condition, since there are limited therapeutic options and patients have an unfavorable prognosis. The frequency of brain metastases in breast cancer is currently on the rise. This might be due to the fact that adjuvant chemotherapeutic and targeted anticancer drugs, while they effectively control disease progression in the periphery, they only poorly cross the blood-brain barrier and do not reach effectively cancer cells disseminated in the brain. It is therefore of fundamental clinical relevance to investigate mechanisms involved in breast cancer metastasis to the brain. To date experimental models of breast cancer metastasis to the brain described in literature are based on the direct intracarotid or intracardiac injection of breast cancer cells. We recently established a brain metastasis breast cancer model in immunocompetent mice based on the orthotopic injection of 4T1 murine breast carcinoma cells in the mammary gland of syngeneic BALB/c mice. 4T1-derived tumors recapitulate the main steps of human breast cancer progression, including epithelial-to-mesenchymal transition, local invasion and metastatic spreading to lung and lymph nodes. 4T1 cells were engineered to stably express firefly Luciferase allowing noninvasive in vivo and ex vivo monitoring of tumor progression and metastatic spreading to target organs. Bioluminescence imaging revealed the appearance of spontaneous lesions to the lung and lymph nodes and, at a much lower frequency, to the brain. Brain metastases were confirmed by macroscopic and microscopic evaluation of the brains at necropsy. We then isolated brain metastatic cells, re-injected them orthotopically in new mice and isolated again lines from brain metastases. After two rounds of selection we obtained lines metastasizing to the brain with 100% penetrance (named 4T1-BM2 for Brain Metastasis, 2nd generation) compared to lines derived after two rounds of in vivo growth from primary tumors (4T1-T2) or from lung metastases (4T1-LM2). We are currently performing experiments to unravel differences in cell proliferation, adhesion, migration, invasion and survival of the 4T1-BM2 line relative to the 4T1-T2 and 4T1-LM2 lines. Initial results indicate that 4T1-BM2 cells are not more invasive or more proliferative in vitro and do not show a more mesenchymal phenotype. Our syngeneic (BALB/c) model of spontaneous breast carcinoma metastasis to the brain is a unique and clinically relevant model to unravel the mechanisms of metastatic breast cancer colonization of the brain. Genes identified in this model represent potentially clinically relevant therapeutic targets for the prevention and the treatment of brain metastases in breast cancer patients.
Resumo:
Creatine deficiency syndromes, due to deficiencies in AGAT, GAMT (creatine synthesis pathway) or SLC6A8 (creatine transporter), lead to complete absence or very strong decrease of creatine in CNS as measured by magnetic resonance spectroscopy. Brain is the main organ affected in creatine-deficient patients, who show severe neurodevelopmental delay and present neurological symptoms in early infancy. AGAT- and GAMT-deficient patients can be treated by oral creatine supplementation which improves their neurological status, while this treatment is inefficient on SLC6A8-deficient patients. While it has long been thought that most, if not all, of brain creatine was of peripheral origin, the past years have brought evidence that creatine can cross blood-brain barrier, however, only with poor efficiency, and that CNS must ensure parts of its creatine needs by its own endogenous synthesis. Moreover, we showed very recently that in many brain structures, including cortex and basal ganglia, AGAT and GAMT, while found in every brain cell types, are not co-expressed but are rather expressed in a dissociated way. This suggests that to allow creatine synthesis in these structures, guanidinoacetate must be transported from AGAT- to GAMT-expressing cells, most probably through SLC6A8. This new understanding of creatine metabolism and transport in CNS will not only allow a better comprehension of brain consequences of creatine deficiency syndromes, but will also contribute to better decipher creatine roles in CNS, not only in energy as ATP regeneration and buffering, but also in its recently suggested functions as neurotransmitter or osmolyte.
Resumo:
La planification scanographique (3D) a démontré son utilité pour une reconstruction anatomique plus précise de la hanche (longueur du fémur, centre de rotation, offset, antéversion et rétroversion). Des études ont montré que lors de la planification 2D 50% seulement correspondaient à l'implant définitif du fémur alors que dans une autre étude ce taux s'élevait à 94% pour une planification 3D. Les erreurs étaient liées à l'agrandissement des radiographies. L'erreur sur la taille de la tige est liée à l'estimation inadéquate de la morphologie osseuse ainsi qu'à la densité osseuse. L'erreur de l'antéversion, augmentée par l'inclinaison du bassin, a pu être éliminée par la planification 3D et l'offset restauré dans 98%. Cette étude est basée sur une nouvelle technique de planification scanographique en trois dimensions pour une meilleure précision de la reconstruction de la hanche. Le but de cette étude est de comparer l'anatomie post-opératoire à celle préopératoire en comparant les tailles d'implant prévu lors de la planification 3D à celle réellement utilisée lors de l'opération afin de déterminer l'exactitude de la restauration anatomique avec étude des différents paramètres (centre de rotation, densité osseuse, L'offset fémoral, rotations des implants, longueur du membre) à l'aide du Logiciel HIP-PLAN (Symbios) avec évaluation de la reproductibilité de notre planification 3D dans une série prospective de 50 patients subissant une prothèse totale de hanche non cimentée primaire par voie antérieure. La planification pré-opératoire a été comparée à un CTscan postopératoire par fusion d'images. CONCLUSION ET PRESPECTIVE Les résultats obtenus sont les suivants : La taille de l'implant a été prédit correctement dans 100% des tiges, 94% des cupules et 88% des têtes (longueur). La différence entre le prévu et la longueur de la jambe postopératoire était de 0,3+2,3 mm. Les valeurs de décalage global, antéversion fémorale, inclinaison et antéversion de la cupule étaient 1,4 mm ± 3,1, 0,6 ± 3,3 0 -0,4 0 ± 5 et 6,9 ° ± 11,4, respectivement. Cette planification permet de prévoir la taille de l'implant précis. Position de la tige et de l'inclinaison de la cupule sont exactement reproductible. La planification scanographique préopératoire 3D permet une évaluation précise de l'anatomie individuelle des patients subissant une prothèse totale de hanche. La prédiction de la taille de l'implant est fiable et la précision du positionnement de la tige est excellente. Toutefois, aucun avantage n'est observée en termes d'orientation de la cupule par rapport aux études impliquant une planification 2D ou la navigation. De plus amples recherches comparant les différentes techniques de planification pré-opératoire à la navigation sont nécessaire.
Resumo:
BACKGROUND: The potential effects of ionizing radiation are of particular concern in children. The model-based iterative reconstruction VEO(TM) is a technique commercialized to improve image quality and reduce noise compared with the filtered back-projection (FBP) method. OBJECTIVE: To evaluate the potential of VEO(TM) on diagnostic image quality and dose reduction in pediatric chest CT examinations. MATERIALS AND METHODS: Twenty children (mean 11.4 years) with cystic fibrosis underwent either a standard CT or a moderately reduced-dose CT plus a minimum-dose CT performed at 100 kVp. Reduced-dose CT examinations consisted of two consecutive acquisitions: one moderately reduced-dose CT with increased noise index (NI = 70) and one minimum-dose CT at CTDIvol 0.14 mGy. Standard CTs were reconstructed using the FBP method while low-dose CTs were reconstructed using FBP and VEO. Two senior radiologists evaluated diagnostic image quality independently by scoring anatomical structures using a four-point scale (1 = excellent, 2 = clear, 3 = diminished, 4 = non-diagnostic). Standard deviation (SD) and signal-to-noise ratio (SNR) were also computed. RESULTS: At moderately reduced doses, VEO images had significantly lower SD (P < 0.001) and higher SNR (P < 0.05) in comparison to filtered back-projection images. Further improvements were obtained at minimum-dose CT. The best diagnostic image quality was obtained with VEO at minimum-dose CT for the small structures (subpleural vessels and lung fissures) (P < 0.001). The potential for dose reduction was dependent on the diagnostic task because of the modification of the image texture produced by this reconstruction. CONCLUSIONS: At minimum-dose CT, VEO enables important dose reduction depending on the clinical indication and makes visible certain small structures that were not perceptible with filtered back-projection.
Resumo:
AIMS: The plasma levels of either brain natriuretic peptide (BNP) or the N-terminal fragment of the prohormone (NT-proBNP) have recently gained extreme importance as markers of myocardial dysfunction. Patients with type 2 diabetes are at high risk of developing cardiovascular complications. This study was aimed to assess whether plasma NT-proBNP levels are at similar levels in type 2 diabetics with or without overt cardiovascular diseases. METHODS: We assayed plasma NT-proBNP in 54 type 2 diabetics, 27 of whom had no overt macro- and/or microvascular complications, while the remaining ones had either or both. The same assay was carried out in 38 healthy control subjects age and sex matched as a group with the diabetics. RESULTS: Plasma NT-proBNP was higher in diabetics (median 121 pg/ml, interquartile range 50-240 pg/ml, ) than in those without complications (37 pg/ml, 21-54 pg/ml, P<0.01). Compared with the controls (55 pg/ml, 40-79 pg/ml), only diabetics with vascular complications had significantly increased plasma NT-proBNP levels (P<0.001). In the diabetics, coronary heart disease and nephropathy (defined according to urinary excretion of albumin) were each independently associated with elevated values of plasma NT-proBNP. CONCLUSIONS: In type 2 diabetes mellitus, patients with macro- and/or micro-vascular complications exhibit an elevation of plasma NT-proBNP levels compared to corresponding patients with no evidence of vascular disease. The excessive secretion of this peptide is independently associated with coronary artery disease and overt nephropathy. The measurement of circulating NT-proBNP concentration may therefore be useful to screen for the presence of macro- and/or microvascular disease.
Resumo:
PURPOSE OF REVIEW: The article reviews recent significant advances and current applications of the temporoparietal fascia flap (TPFF) in head and neck surgery. RECENT FINDINGS: The recent literature describes a wide span of new applications of the TPFF in many areas. Significant developments and refinements in the reconstruction of orbitomaxillary composite defects and orbital exenteration cavities are reported. The TPFF combined with alloplastic framework is gaining in importance in external ear reconstruction. Innovative prefabricated skin or soft-tissue grafts based on the TPFF are used to restore facial contour or in the reconstruction of complex facial defects. The free TPFF finds a role in laryngotracheal reconstruction as a vascular carrier to support cartilage grafts. SUMMARY: Owing to its reliability and unequalled structural properties, the TPFF still plays a central role in facial reconstruction. Future investigation will likely incorporate the free TPFF as a vascular carrier of bioengineered tissues, such as cartilage and mucosa, for various head and neck indications.
Resumo:
This article presents a global vision of images in forensic science. The proliferation of perspectives on the use of images throughout criminal investigations and the increasing demand for research on this topic seem to demand a forensic science-based analysis. In this study, the definitions of and concepts related to material traces are revisited and applied to images, and a structured approach is used to persuade the scientific community to extend and improve the use of images as traces in criminal investigations. Current research efforts focus on technical issues and evidence assessment. This article provides a sound foundation for rationalising and explaining the processes involved in the production of clues from trace images. For example, the mechanisms through which these visual traces become clues of presence or action are described. An extensive literature review of forensic image analysis emphasises the existing guidelines and knowledge available for answering investigative questions (who, what, where, when and how). However, complementary developments are still necessary to demystify many aspects of image analysis in forensic science, including how to review and select images or use them to reconstruct an event or assist intelligence efforts. The hypothetico-deductive reasoning pathway used to discover unknown elements of an event or crime can also help scientists understand the underlying processes involved in their decision making. An analysis of a single image in an investigative or probative context is used to demonstrate the highly informative potential of images as traces and/or clues. Research efforts should be directed toward formalising the extraction and combination of clues from images. An appropriate methodology is key to expanding the use of images in forensic science.
Resumo:
Background: Maturation of amplitude-integrated electroencephalogram (aEEG) activity is influenced by both gestational age (GA) and postmenstrual age. It is not fully known how this process is influenced by cerebral lesions. Objective: To compare early aEEG developmental changes between preterm newborns with different degrees of cerebral lesions on cranial ultrasound (cUS). Methods: Prospective cohort study on preterm newborns with GA <32.0 weeks, undergoing continuous aEEG recording during the first 84 h after birth. aEEG characteristics were qualitatively and quantitatively evaluated using pre-established criteria. Based on cUS findings three groups were formed: normal (n = 78), mild (n = 20), and severe cerebral lesions (n = 6). Linear mixed models for repeated measures were used to analyze aEEG maturational trajectories. Results: 104 newborns with a mean GA (range) 29.5 (24.4-31.7) weeks, and birth weight 1,220 (580-2,020) g were recruited. Newborns with severe brain lesions started with similar aEEG scores and tendentially lower aEEG amplitudes than newborns without brain lesions, and showed a slower development of the cyclic activity (p < 0.001), but a more rapid increase of the maximum and minimum aEEG amplitudes (p = 0.002 and p = 0.04). Conclusions: Preterm infants with severe cerebral lesions manifest a maturational delay in the aEEG cyclic activity already early after birth, but show a catch-up of aEEG amplitudes to that of newborns without cerebral lesions. Changes in the maturational aEEG pattern may be a marker of severe neurological lesions in the preterm infant.
Resumo:
In vivo 13C NMR spectroscopy has the unique capability to measure metabolic fluxes noninvasively in the brain. Quantitative measurements of metabolic fluxes require analysis of the 13C labeling time courses obtained experimentally with a metabolic model. The present work reviews the ingredients necessary for a dynamic metabolic modeling study, with particular emphasis on practical issues.
Resumo:
This paper presents a method to reconstruct 3D surfaces of silicon wafers from 2D images of printed circuits taken with a scanning electron microscope. Our reconstruction method combines the physical model of the optical acquisition system with prior knowledge about the shapes of the patterns in the circuit; the result is a shape-from-shading technique with a shape prior. The reconstruction of the surface is formulated as an optimization problem with an objective functional that combines a data-fidelity term on the microscopic image with two prior terms on the surface. The data term models the acquisition system through the irradiance equation characteristic of the microscope; the first prior is a smoothness penalty on the reconstructed surface, and the second prior constrains the shape of the surface to agree with the expected shape of the pattern in the circuit. In order to account for the variability of the manufacturing process, this second prior includes a deformation field that allows a nonlinear elastic deformation between the expected pattern and the reconstructed surface. As a result, the minimization problem has two unknowns, and the reconstruction method provides two outputs: 1) a reconstructed surface and 2) a deformation field. The reconstructed surface is derived from the shading observed in the image and the prior knowledge about the pattern in the circuit, while the deformation field produces a mapping between the expected shape and the reconstructed surface that provides a measure of deviation between the circuit design models and the real manufacturing process.
Resumo:
PURPOSE OF REVIEW: Energy metabolism is increasingly recognized as a key factor in the pathogenesis of acute brain injury (ABI). We review the role of cerebral lactate metabolism and summarize evidence showing that lactate may act as supplemental fuel after ABI. RECENT FINDINGS: The role of cerebral lactate has shifted from a waste product to a potentially preferential fuel and signaling molecule. According to the astrocyte-neuron lactate shuttle model, glycolytic lactate might act as glucose-sparing substrate. Lactate also is emerging as a key signal to regulate cerebral blood flow (CBF) and a neuroprotective agent after experimental ABI. Clinical investigation using cerebral microdialysis shows the existence of two main lactate patterns, ischemic - from anaerobic metabolism - and nonischemic, from activated glycolysis, whereby lactate can be used as supplemental energy fuel. Preliminary clinical data suggests hypertonic lactate solutions improve cerebral energy metabolism and are an effective treatment for elevated intracranial pressure (ICP) after ABI. SUMMARY: Lactate can be a supplemental fuel for the injured brain and is important to regulate glucose metabolism and CBF. Exogenous lactate supplementation may be neuroprotective after experimental ABI. Recent clinical data from ABI patients suggest hypertonic lactate solutions may be a valid therapeutic option for secondary energy dysfunction and elevated ICP.
Resumo:
Brain spectrin, a membrane-related cytoskeletal protein, exists as two isoforms. Brain spectrin 240/235 is localized preferentially in the perikaryon and axon of neuronal cells and brain spectrin 240/235E is found essentially in the neuronal soma and dendrites and in glia (Riederer et al., 1986, J. Cell Biol., 102, 2088 - 2097). The sensory neurons in dorsal root ganglia, devoid of any dendrites, make a good tool to investigate such differential expression of spectrin isoforms. In this study expression and localization of both brain spectrin isoforms were analysed during early chicken dorsal root ganglia development in vivo and in culture. Both isoforms appeared at embryonic day 6. Brain spectrin 240/235 exhibited a transient increase during embryonic development and was first expressed in ventrolateral neurons. In ganglion cells in situ and in culture this spectrin type showed a somato - axonal distribution pattern. In contrast, brain spectrin 240/235E slightly increased between E6 and E15 and remained practically unchanged. It was localized mainly in smaller neurons of the mediodorsal area as punctate staining in the cytoplasm, was restricted exclusively to the ganglion cell perikarya and was absent from axons both in situ and in culture. This study suggests that brain spectrin 240/235 may contribute towards outgrowth, elongation and maintenance of axonal processes and that brain spectrin 240/235E seems to be exclusively involved in the stabilization of the cytoarchitecture of cell bodies in a selected population of ganglion cells.