162 resultados para motion pattern
Resumo:
PURPOSE: To document the neurological outcome, spinal alignment and segmental range of movement after oblique cervical corpectomy (OCC) for cervical compressive myelopathy. METHODS: This retrospective study included 109 patients--93 with cervical spondylotic myelopathy and 16 with ossified posterior longitudinal ligament in whom spinal curvature and range of segmental movements were assessed on neutral and dynamic cervical radiographs. Neurological function was measured by Nurick's grade and modified Japanese Orthopedic Association (JOA) scores. Eighty-eight patients (81%) underwent either a single- or two-level corpectomy; the remaining (19%) undergoing three- or four-level corpectomies. The average duration of follow-up was 30.52 months. RESULTS: The Nurick's grade and the JOA scores showed statistically significant improvements after surgery (p < 0.001). The mean postoperative segmental angle in the neutral position straightened by 4.7 ± 6.5°. The residual segmental range of movement for a single-level corpectomy was 16.7° (59.7% of the preoperative value), for two-level corpectomy it was 20.0° (67.2%) and for three-level corpectomies it was 22.9° (74.3%). 63% of patients with lordotic spines continued to have lordosis postoperatively while only one became kyphotic without clinical worsening. Four patients with preoperative kyphotic spines showed no change in spine curvature. None developed spinal instability. CONCLUSIONS: The OCC preserves segmental motion in the short-term, however, the tendency towards straightening of the spine, albeit without clinical worsening, warrants serial follow-up imaging to determine whether this motion preservation is long lasting.
Resumo:
Measurement of microvascular perfusion with Intravoxel Incoherent Motion (IVIM) MRI is gaining interest. Yet, the physiological influences on the IVIM perfusion parameters ("pseudo-diffusion" coefficient D*, perfusion fraction f, and flow related parameter fD*) remain insufficiently characterized. In this article, we hypothesize that D* and fD*, which depend on blood speed, should vary during the cardiac cycle. We extended the IVIM model to include time dependence of D* = D*(t), and demonstrate in the healthy human brain that both parameters D* and fD* are significantly larger during systole than diastole, while the diffusion coefficient D and f do not vary significantly. The results non-invasively demonstrate the pulsatility of the brain's microvasculature.
Resumo:
Combination antiretroviral therapy has dramatically decreased the incidence of HIV-related mortality and serious opportunistic diseases, among which is HIV- associated dementia. However, minor forms of cognitive dysfunction have not disappeared and may even have increased in frequency. Aging of HIV+ patients, insufficient penetration of antiretroviral drugs into the brain with continuous low- grade viral production and inflammation may play a role. A putative neurotoxicity of combination antiretroviral therapy is controversial. In this article, we will discuss these aspects, as well as clinical and pathophysiological features shared by HIV-associated neurocognitive disorders and other neurodegenerative diseases, especially Alzheimer's disease. This article will briefly summarize the current clinical trials on neuroprotective agents, and the management of patients with neurocognitive disorders will be discussed
Resumo:
The last ten years of research in the field of innate immunity have been incredibly fertile: the transmembrane Toll-like receptors (TLRs) were discovered as guardians protecting the host against microbial attacks and the emerging pathways characterized in detail. More recently, cytoplasmic sensors were identified, which are capable of detecting not only microbial, but also self molecules. Importantly, while such receptors trigger crucial host responses to microbial insult, over-activity of some of them has been linked to autoinflammatory disorders, hence demonstrating the importance of tightly regulating their actions over time and space. Here, we provide an overview of recent findings covering this area of innate and inflammatory responses that originate from the cytoplasm
Resumo:
Diffusion-weighted spin-echo imaging of the spine has been successfully implemented for differentiation of benign fracture edema and tumor infiltration of the vertebral body. Nevertheless, this technique still suffers from insufficient image quality in numerous patients due to motion artifacts. The aim of this study was to investigate the impact of variable respiratory motion artifact suppression techniques on image quality in diffusion-weighted spin-echo imaging of the spine. In addition to phase-encoding reordering, a newly implemented right hemi-diaphragmaitc navigator for respiratory gating was used. Subjective and objective image quality parameters were compared. Respiratory motion artifact suppression has a major impact on image quality in diffusion-weighted imaging of the spine. Phase-encoding reordering does not enhance image quality while right hemi-diaphragmatic respiratory navigator gating significantly improves image quality at the cost of data acquisition time. Navigator gating should be used if standard spin-echo diffusion-weighted imaging demonstrates insufficient image quality.
Resumo:
There is enormous interest in designing training methods for reducing cognitive decline in healthy older adults. Because it is impaired with aging, multitasking has often been targeted and has been shown to be malleable with appropriate training. Investigating the effects of cognitive training on functional brain activation might provide critical indication regarding the mechanisms that underlie those positive effects, as well as provide models for selecting appropriate training methods. The few studies that have looked at brain correlates of cognitive training indicate a variable pattern and location of brain changes - a result that might relate to differences in training formats. The goal of this study was to measure the neural substrates as a function of whether divided attentional training programs induced the use of alternative processes or whether it relied on repeated practice. Forty-eight older adults were randomly allocated to one of three training programs. In the SINGLE REPEATED training, participants practiced an alphanumeric equation and a visual detection task, each under focused attention. In the DIVIDED FIXED training, participants practiced combining verification and detection by divided attention, with equal attention allocated to both tasks. In the DIVIDED VARIABLE training, participants completed the task by divided attention, but were taught to vary the attentional priority allocated to each task. Brain activation was measured with fMRI pre- and post-training while completing each task individually and the two tasks combined. The three training programs resulted in markedly different brain changes. Practice on individual tasks in the SINGLE REPEATED training resulted in reduced brain activation whereas DIVIDED VARIABLE training resulted in a larger recruitment of the right superior and middle frontal gyrus, a region that has been involved in multitasking. The type of training is a critical factor in determining the pattern of brain activation.
Resumo:
Epoetin-delta (Dynepo Shire Pharmaceuticals, Basing stoke, UK) is a synthetic form of erythropoietin (EPO) whose resemblance with endogenous EPO makes it hard to identify using the classical identification criteria. Urine samples collected from six healthy volunteers treated with epoetin-delta injections and from a control population were immuno-purified and analyzed with the usual IEF method. On the basis of the EPO profiles integration, a linear multivariate model was computed for discriminant analysis. For each sample, a pattern classification algorithm returned a bands distribution and intensity score (bands intensity score) saying how representative this sample is of one of the two classes, positive or negative. Effort profiles were also integrated in the model. The method yielded a good sensitivity versus specificity relation and was used to determine the detection window of the molecule following multiple injections. The bands intensity score, which can be generalized to epoetin-alpha and epoetin-beta, is proposed as an alternative criterion and a supplementary evidence for the identification of EPO abuse.
Resumo:
Glomalean fungi induce and colonize symbiotic tissue called arbuscular mycorrhiza on the roots of most land plants. Other fungi also colonize plants but cause disease not symbiosis. Whole-transcriptome analysis using a custom-designed Affymetrix Gene-Chip and confirmation with real-time RT-PCR revealed 224 genes affected during arbuscular mycorrhizal symbiosis. We compared these transcription profiles with those from rice roots that were colonized by pathogens (Magnaporthe grisea and Fusarium moniliforme). Over 40% of genes showed differential regulation caused by both the symbiotic and at least one of the pathogenic interactions. A set of genes was similarly expressed in all three associations, revealing a conserved response to fungal colonization. The responses that were shared between pathogen and symbiont infection may play a role in compatibility. Likewise, the responses that are different may cause disease. Some of the genes that respond to mycorrhizal colonization may be involved in the uptake of phosphate. Indeed, phosphate addition mimicked the effect of mycorrhiza on 8% of the tested genes. We found that 34% of the mycorrhiza-associated rice genes were also associated with mycorrhiza in dicots, revealing a conserved pattern of response between the two angiosperm classes.
Resumo:
BACKGROUND AND PURPOSE: Intravoxel incoherent motion MRI has been proposed as an alternative method to measure brain perfusion. Our aim was to evaluate the utility of intravoxel incoherent motion perfusion parameters (the perfusion fraction, the pseudodiffusion coefficient, and the flow-related parameter) to differentiate high- and low-grade brain gliomas. MATERIALS AND METHODS: The intravoxel incoherent motion perfusion parameters were assessed in 21 brain gliomas (16 high-grade, 5 low-grade). Images were acquired by using a Stejskal-Tanner diffusion pulse sequence, with 16 values of b (0-900 s/mm(2)) in 3 orthogonal directions on 3T systems equipped with 32 multichannel receiver head coils. The intravoxel incoherent motion perfusion parameters were derived by fitting the intravoxel incoherent motion biexponential model. Regions of interest were drawn in regions of maximum intravoxel incoherent motion perfusion fraction and contralateral control regions. Statistical significance was assessed by using the Student t test. In addition, regions of interest were drawn around all whole tumors and were evaluated with the help of histograms. RESULTS: In the regions of maximum perfusion fraction, perfusion fraction was significantly higher in the high-grade group (0.127 ± 0.031) than in the low-grade group (0.084 ± 0.016, P < .001) and in the contralateral control region (0.061 ± 0.011, P < .001). No statistically significant difference was observed for the pseudodiffusion coefficient. The perfusion fraction correlated moderately with dynamic susceptibility contrast relative CBV (r = 0.59). The histograms of the perfusion fraction showed a "heavy-tailed" distribution for high-grade but not low-grade gliomas. CONCLUSIONS: The intravoxel incoherent motion perfusion fraction is helpful for differentiating high- from low-grade brain gliomas.
Resumo:
Purpose/Objective: The family of histone deacetylases comprises 18 members in mammals, among which seven sirtuins (SIRT1-7). Sirtuins are NADP-dependent enzymes that have been involved in the control of cell metabolism, proliferation and survival. The expression pattern of sirtuins and their influence on host response to microbial infection remain largely unknown. The aim of the study was to analyze the expression of SIRT1-7 and to address the effects of SIRT1/2 inhibition on innate immune responses in vitro and in vivo.. Materials and methods: in vitro: Bone marrow (BM), BM-derived macrophages (BMDMs) and dendritic cells (BMDCs) and RAW 264.7 and J774.1 macrophage cell lines were stimulated for 0, 2, 6 and 18 h with LPS, Pam3CSK4 and CpG ODN. SIRT1-7 mRNA was quantified by real time-PCR. TNF was measured by ELISA. In vivo: BALB/c mice were challenged with LPS (350 lg i.p.) with or without a SIRT1/2 inhibitor. Blood and organs were collected after 0, 1, 4, 8 and 24 h to quantify SIRT1-7 and TNF. Mortality was assessed daily. Results: Bone marrow, macrophages and DCs express, in order of abundance, SIRT2 > > SIRT1, SIRT3 and SIRT6 > SIRT4, SIRT5 and SIRT7. Microbial products decrease the expression of all sirtuins except SIRT6 in a time dependent manner in BMDMs (0_24 h). SIRT2 is the most expressed sirtuin also in the liver, kidney (together with SIRT3) and spleen. Upon LPS challenge, SIRT1, SIRT3, SIRT4 and SIRT7 mRNA levels decrease in the liver (from 4 h to 24 h), whereas SIRT1-7 mRNA levels decrease within 1 h in both kidney and spleen. Pharmacological inhibition of SIRT1/2 decreases TNF production by macrophages stimulated with LPS, Pam3CSK4 and CpG ODN (n = 6; P < 0.001). In agreement, prophylactic treatment with a SIRT1/2 inhibitor decreases TNF production (n = 8; P = 0.04) and increases survival (n = 13, P = 0.03) of mice challenged with LPS. Conclusions: Sirtuins are expressed in innate immune cells. Inhibition of SIRT1/2 activity decreases cytokine production by macrophages and protects from endotoxemia, suggesting that sirtuin inhibitors may represent novel adjunctive therapy for treating inflammatory disorders such as sepsis.