99 resultados para habitat specificity
Resumo:
Steroid hormone receptors activate specific gene transcription by binding as hormone-receptor complexes to short DNA enhancer-like elements termed hormone response elements (HREs). We have shown previously that a highly conserved 66 amino acid region of the oestrogen (ER) and glucocorticoid (GR) receptors, which corresponds to part of the receptor DNA binding domain (region C) is responsible for determining the specificity of target gene activation. This region contains two sub-regions (CI and CII) analogous to the 'zinc-fingers' of the transcription factor TFIIIA. We show here that CI and CII appear to be separate domains both involved in DNA binding. Furthermore, using chimaeric ERs in which either the first (N-terminal) (CI) or second (CII) 'zinc finger' region has been exchanged with that of the GR, indicates that it is the first 'zinc finger' which largely determines target gene specificity. We suggest that receptor recognition of the HRE is analogous to that of the helix-turn-helix DNA binding motif in that the receptor binds to DNA as a dimer with the first 'zinc finger' lying in the major groove recognizing one half of the palindromic HRE, and that protein-DNA interaction is stabilized through non-specific DNA binding and dimer interactions contributed by the second 'zinc finger'.
Resumo:
In parasites, host specificity may result either from restricted dispersal capacity or from fixed coevolutionary host-parasite adaptations. Knowledge of those proximal mechanisms leading to particular host specificity is fundamental to understand host-parasite interactions and potential coevolution of parasites and hosts. The relative importance of these two mechanisms was quantified through infection and cross-infection experiments using mites and bats as a model. Monospecific pools of parasitic mites (Spinturnix myoti and S. andegavinus) were subjected either to individual bats belonging to their traditional, native bat host species, or to another substitute host species within the same bat genus (Myotis). The two parasite species reacted differently to these treatments. S. myoti exhibited a clear preference for, and had a higher fitness on, its native host, Myotis myotis. In contrast, S. andegavinus showed no host choice, although its fitness was higher on its native host M. daubentoni. The causal mechanisms mediating host specificity can apparently differ within closely related host-parasite systems.
Resumo:
In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.
Habitat, morphology and karyotype of the Saharan shrew Crocidura tarfayaensis (Mammalia : Soricidae)
Resumo:
The Saharan shrew Crocidura tarfayaensis Vesmanis and Vesmanis, 1980, has a limited disribution along the Atlantic coast of Sahara, south of Agadir (Morocco) through Western Sahara into Mauritania and is only known from few captures and some owl pellets. Here we report field data from the successful trapping of five specimens of C. tarfayaensis in the Guelmim region. The habitat was characterized by sand dunes along a river, with dense shrubberies of Tamarix sp., the huge grass Erianthus ravennae (Poaceae) and flat bushes of Atriplex glauca var. ifniensis (Chenopodiaceae). Morphological discrimination with C. whitakeri were examined. The chromosomes of C. tarfayaensis revealed a karyotype of 2n = 36, similar to that of the Canary shrew C. canariensis and the Sicilian shrew C. sicula. In conclusion, C. tarfayaensis seems to be a descendant of the presumed continental ancestor of the two island species.
Resumo:
Arbuscular mycorrhizal symbioses are mutualistic interactions between fungi and most plants. There is considerable interest in this symbiosis because of the strong nutritional benefits conferred to plants and its influence on plant diversity. Until recently, the symbiosis was assumed to be unspecific. However, two studies have now revealed that although it can be largely unspecific with the fungal community composition changing seasonally, in certain ecosystems it can also be highly specific and might potentially allow plants to cheat the arbuscular mycorrhizal network that connects plants below ground.
Resumo:
DNA must constantly be repaired to maintain genome stability. Although it is clear that DNA repair reactions depend on cell type and developmental stage, we know surprisingly little about the mechanisms that underlie this tissue specificity. This is due, in part, to the lack of adequate study systems. This review discusses recent progress toward understanding the mechanism leading to varying rates of instability at expanded trinucleotide repeats (TNRs) in different tissues. Although they are not DNA lesions, TNRs are hotspots for genome instability because normal DNA repair activities cause changes in repeat length. The rates of expansions and contractions are readily detectable and depend on cell identity, making TNR instability a particularly convenient model system. A better understanding of this type of genome instability will provide a foundation for studying tissue-specific DNA repair more generally, which has implications in cancer and other diseases caused by mutations in the caretakers of the genome.
Resumo:
Purpose/Objective: Phenotypic and functional T cell properties are usually analyzed at the level of defined cell populations. However, large differences between individual T cells may have important functional consequences. To answer this issue, we performed highly sensitive single-cell gene expression profiling, which allows the direct ex vivo characterization of individual virus- and tumor-specific T cells from healthy donors and melanoma patients. Materials and methods: HLA-A*0201-positive patients with stage III/ IV metastatic melanoma were included in a phase I clinical trial (LUD- 00-018). Patients received monthly low-dose of the Melan-AMART- 1 26_35 unmodified natural (EAAGIGILTV) or the analog A27L (ELAGIGILTV) peptides, mixed CPG and IFA. Individual effector memory CD28+ (EM28+) and EM28- tetramer-specific CD8pos T cells were sorted by flow cytometer. Following direct cell lysis and reverse transcription, the resulting cDNA was precipitated and globally amplified. Semi-quantitative PCR was used for gene expression and TCR BV repertoire analyses. Results: We have previously shown that vaccination with the natural Melan-A peptide induced T cells with superior effector functions as compared to the analog peptide optimized for enhanced HLA binding. Here we found that natural peptide vaccination induced EM28+ T cells with frequent co-expression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3 and CCR5) and effector-related genes (IFNG, KLRD1, PRF1 and GZMB), comparable to protective EBV- and CMV-specific T cells. In contrast, memory/homing- and effectorassociated genes were less frequently co-expressed after vaccination with the analog peptide. Conclusions: These findings reveal a previously unknown level of gene expression diversity among vaccine- and virus-specific T cells with the simultaneous co-expression of multiple memory/homing- and effector- related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor- and virus-specific T cells.
Resumo:
Cytotoxic CD8 T cells mediate immunity to pathogens and they are able to eliminate malignant cells. Immunity to viruses and bacteria primarily involves CD8 T cells bearing high affinity T cell receptors (TCRs), which are specific to pathogen-derived (non-self) antigens. Given the thorough elimination of high affinity self/tumor-antigen reactive T cells by central and peripheral tolerance mechanisms, anti-cancer immunity mostly depends on TCRs with intermediate-to-low affinity for self-antigens. Because of this, a promising novel therapeutic approach to increase the efficacy of tumor-reactive T cells is to engineer their TCRs, with the aim to enhance their binding kinetics to pMHC complexes, or to directly manipulate the TCR-signaling cascades. Such manipulations require a detailed knowledge on how pMHC-TCR and co-receptors binding kinetics impact the T cell response. In this review, we present the current knowledge in this field. We discuss future challenges in identifying and targeting the molecular mechanisms to enhance the function of natural or TCR-affinity optimized T cells, and we provide perspectives for the development of protective anti-tumor T cell responses.
Resumo:
The richness of the parasitic community associated with social insect colonies has rarely been investigated. Moreover, understanding how hosts and pathogens interact in nature is important to interpret results from laboratory experiments. Here, we assessed the diversity, prevalence and virulence of fungal entomopathogens present around and within colonies of the ant Formica selysi. We detected eight fungal species known to be entomopathogenic in soil sampled from the habitat of ants. Six of these entomopathogens were found in active nests, abandoned nests, and corpses from dump piles or live ants. A systematic search for the presence of three generalist fungal entomopathogens in ant colonies revealed a large variation in their prevalence. The most common of the three pathogens, Paecilomyces lilacinus, was detected in 44% of the colonies. Beauveria bassiana occurred in 17% of the colonies, often in association with P. lilacinus, whereas we did not detect Metarhizium brunneum (formerly M. anisopliae) in active colonies. The three fungal species caused significant mortality to experimentally challenged ants, but varied in their degree of virulence. There was a high level of genetic diversity within B. bassiana isolates, which delineated three genetic strains that also differed significantly in their virulence. Overall, our study indicates that the ants encounter a diversity of fungal entomopathogens in their natural habitat. Moreover, some generalist pathogens vary greatly in their virulence and prevalence in ant colonies, which calls for further studies on the specificity of the interactions between the ant hosts and their fungal pathogens.
Resumo:
Some species introduced into new geographical areas from their native ranges wreak ecological and economic havoc in their new environment. Although many studies have searched for either species or habitat characteristics that predict invasiveness of exotic species, the match between characteristics of the invader and those of members of the existing native community may be essential to understanding invasiveness. Here, we find that one metric, the phylogenetic relatedness of an invader to the native community, provides a predictive tool for invasiveness. Using a phylogenetic supertree of all grass species in California, we show that highly invasive grass species are, on average, significantly less related to native grasses than are introduced but noninvasive grasses. The match between the invader and the existing native community may explain why exotic pest species are not uniformly noxious in all novel habitats. Relatedness of invaders to the native biota may be one useful criterion for prioritizing management efforts of exotic species.
Resumo:
In heart transplantation (HTx), acute antibody-mediated rejection (AMR) is infrequent but carries high mortality and increased risk of graft vasculopathy. The diagnosis requires evidence of acute graft dysfunction, capillary lesions on endomyocardial biopsy (EMB), and immunopathological criteria of antibodymediated injury. Multiple markers of antibody-mediated injuries have been proposed, but there is ample debate on their usefulness. In kidney transplantation, C4d deposition in peritubular capillaries is a reliable marker of alloantibody-dependant graft injury. In this study, we prospectively screened all EMBs for C4d and CD68 in new HTx recipients, and correlated pathological fi ndings with immunological evidence of donor-specifi c antibodies (DSA) and graft dysfunction. Methods Between Nov 05 and Aug 08, we had 22 HTx, and 17 cases were analysed. All recipients received polyclonal rabbit anti-thymocytes globulin, calcineurin inhibitors, mycophenolate mofetil, and corticosteroids (weaning in 6 -12 months). They had EMB every 1-2 weeks in the fi rst 3 months, and then monthly for 9 months. C4d and CD 68 were assessed by immunochemistry. Echocardiography and DSA assessment or crossmatch (early phase) were realised if C4d or CD68 staining was positive. Results There was 1 early and 1 late AMR. Table 1 C4d and CD68 positive, at least 1 EMB 6 / 17; 35% 1 treated C4d and CD68 positive, at least 2 consecutive EMBs 3 / 17; 17.5% 1 treated C4d and CD68 positive, and graft dysfunction 1 / 17; 6% 1 treated C4d and CD68 positive, with DSA and crossmatch + 1 / 17; 6% 1 treated Table 2 C4d and CD68 positive, at least 1 EMB 1 / 17; 6% 1 treated C4d and CD68 positive, at least 2 consecutive EMBs 1 /17; 6% 1 treated C4d and CD68 positive and graft dysfunction 1 / 17; 6% 1 treated C4d and CD68 positive, and + DSA 1 / 17; 6% 1 treated Conclusion In this single-center experience, C4d / CD68 positive staining was frequent in the early phase and raised the question of false positive cases of AMR. However, these markers showed high specifi city for the diagnosis of AMR in the late phase. Of course these data need to be confi rmed in larger multi-center studies.
Resumo:
BACKGROUND: Autofluorescence bronchoscopy (AFB) is a highly sensitive tool for the detection of early bronchial cancers. However, its specificity remains limited due to primarily false positive results induced by hyperplasia, metaplasia and inflammation. We have investigated the potential of blue-violet backscattered light to eliminate false positive results during AFB in a clinical pilot study. METHODS: The diagnostic autofluorescence endoscopy (DAFE) system was equipped with a variable band pass filter in the imaging detection path. The backscattering properties of normal and abnormal bronchial mucosae were assessed by computing the contrast between the two tissue types for blue-violet wavelengths ranging between 410 and 490 nm in 12 patients undergoing routine DAFE examination. In a second study including 6 patients we used a variable long pass (LP) filter to determine the spectral design of the emission filter dedicated to the detection of this blue-violet light with the DAFE system. RESULTS: (Pre-)neoplastic mucosa showed a clear wavelength dependence of the backscattering properties of blue-violet light while the reflectivity of normal, metaplastic and hyperplastic autofluorescence positive mucosa was wavelength independent. CONCLUSIONS: Our results showed that the detection of blue-violet light has the potential to reduce the number of false positive results in AFB. In addition we determined the spectral design of the emission filter dedicated to the detection of this blue-violet light with the DAFE system.
Resumo:
The macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that recently emerged as an attractive therapeutic target for a variety of diseases. A diverse panel of fully human anti-MIF antibodies was generated by selection from a phage display library and extensively analyzed in vitro. Epitope mapping studies identified antibodies specific for linear as well as structural epitopes. Experimental animal studies revealed that only those antibodies binding epitopes within amino acids 50-68 or 86-102 of the MIF molecule exerted protective effects in models of sepsis or contact hypersensitivity. Within the MIF protein, these two binding regions form a β-sheet structure that includes the MIF oxidoreductase motif. We therefore conclude that this β-sheet structure is a crucial region for MIF activity and a promising target for anti-MIF antibody therapy.