37 resultados para feeding and nutrition


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glucose is an important signal that regulates glucose and energy homeostasis but its precise physiological role and signaling mechanism in the brain are still uncompletely understood. Over the recent years we have investigated the possibility that central glucose sensing may share functional similarities with glucose sensing by pancreatic beta-cells, in particular a requirement for the expression of the glucose transporter Glut2. Using mice with genetic inactivation of Glut2, but rescued pancreatic beta-cell function by transgenic expression of a glucose transporter, we have established that extrapancreatic glucose sensors are involved: i) in the control of glucagon secretion in response to hypoglycemia, ii) in the control of feeding and iii) of energy expenditure. We have more recently shown that central Glut2-dependent glucose sensors are involved in the regulation of NPY and POMC expression by arcuate nucleus neurons and that the sensitivity to leptin of these neurons is enhanced by Glut2-dependent glucose sensors. Using mice with genetic tagging of Glut2-expressing cells, we determined that the NPY and POMC neurons did not express Glut2 but were connected to Glut2 expressing neurons located most probably outside of the arcuate nucleus. We are now defining the electrophysiological behavior of these Glut2 expressing neurons. Our data provide an initial map of glucose sensing neurons expressing Glut2 and link these neurons with the control of specific physiological function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Little is known on the relative importance of growth at different periods between birth and adolescence on blood pressure (BP). Objective: To assess the association between birth weight, change in body weight (growth) and BP across the entire span of childhood and adolescence. Methods: School-based surveys were conducted annually between 1998 and 2006 among all children in four school grades (kindergarten, 4th, 7th, and 10th year of compulsory school) in the Seychelles, Indian Ocean. Height and weight and BP were measured. Three cohorts of children examined twice were analyzed: 1606 children surveyed at age 5.5 and 9.1, 2557 at age 9.2 and 12.5, and 2065 at age 12.5 and 15.5, respectively. Weights at birth and at one year were extracted from medical files. Weights were expressed as Z-scores and growth was defined as a change in weight Z-scores (corresponding to weight centile crossing). The association between BP (at age 5.5, 9.2, 12.5, and 15.5) and weight at different times was assessed by linear regression. Using results of regression models of BP on all successive weights, life course plots were drawn by plotting regression coefficients against age at which weight was measured. The figure shows a life course plot of systolic BP in boys aged 15.5. Results: Without adjustment for current weight (at the time of BP measurement), birth weight was not associated with current BP, irrespective of age, excepted for girls at age 15.5 for whom a modest positive association was found. When adjusted for current weight, birth weight was negatively and modestly associated with current BP. BP was strongly associated with current weight, irrespective of age. Life course plots showed that BP was strongly associated with growth during the few preceding years but not with growth during earlier years, except for growth during the first year of life which tended to be associated with systolic BP. Conclusions: Our findings suggest that BP during childhood and adolescence is mainly determined by current body weight and recent growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: In a clinical population, we estimated the frequency of mood disorders among 271 patients suffering from Anorexia Nervosa (AN) and Bulimia Nervosa (BN) in comparison to a control group matched for age and gender. METHOD: The frequency of mood disorders was measured using the Mini International Neuropsychiatric Interview (MINI), DSM-IV version. RESULTS: Mood disorders were more frequent among eating disorder (ED) patients than among controls, with a global prevalence of the order of 80% for each ED group. The majority of the mood disorders comorbid with ED were depressive disorders (MDD and dysthymia). The relative chronology of onset of these disorders was equivocal, because mood disorders in some cases preceded and in others followed the onset of the eating disorders. LIMITATIONS: Our sample was characterized by patients with severe ED and high comorbidities, and thus do not represent the entire population of AN or BN. This also may have resulted in an overestimation of prevalence. CONCLUSION: Mood disorders appear significantly more frequently in patients seeking care for ED than in controls. These results have implications for the assessment and treatment of ED patients, and for the aetio-pathogenesis of these disorders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

E2F transcription factors are known regulators of the cell cycle, proliferation, apoptosis, and differentiation. Here, we reveal that E2F1 plays an essential role in liver physiopathology through the regulation of glycolysis and lipogenesis. We demonstrate that E2F1 deficiency leads to a decrease in glycolysis and de novo synthesis of fatty acids in hepatocytes. We further demonstrate that E2F1 directly binds to the promoters of key lipogenic genes, including Fasn, but does not bind directly to genes encoding glycolysis pathway components, suggesting an indirect effect. In murine models, E2F1 expression and activity increased in response to feeding and upon insulin stimulation through canonical activation of the CDK4/pRB pathway. Moreover, E2F1 expression was increased in liver biopsies from obese, glucose-intolerant humans compared with biopsies from lean subjects. Finally, E2f1 deletion completely abrogated hepatic steatosis in different murine models of nonalcoholic fatty liver disease (NAFLD). In conclusion, our data demonstrate that E2F1 regulates lipid synthesis and glycolysis and thus contributes to the development of liver pathology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our knowledge of how genes act on the nervous system in response to the environment to generate behavioral plasticity is limited. A number of recent advancements in this area concern food-related behaviors and a specific gene family called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). The desert locust (Schistocerca gregaria) is notorious for its destructive feeding and long-term migratory behavior. Locust phase polyphenism is an extreme example of environmentally induced behavioral plasticity. In response to changes in population density, locusts dramatically alter their behavior, from solitary and relatively sedentary behavior to active aggregation and swarming. Very little is known about the molecular and genetic basis of this striking behavioral phenomenon. Here we initiated studies into the locust for gene by identifying, cloning, and studying expression of the gene in the locust brain. We determined the phylogenetic relationships between the locust PKG and other known PKG proteins in insects. FOR expression was found to be confined to neurons of the anterior midline of the brain, the pars intercerebralis. Our results suggest that differences in PKG enzyme activity are correlated to well-established phase-related behavioral differences. These results lay the groundwork for functional studies of the locust for gene and its possible relations to locust phase polyphenism.