73 resultados para computer-based instrumentation
Resumo:
AIM: The aim of this study was to evaluate a new pedagogical approach in teaching fluid, electrolyte and acid-base pathophysiology in undergraduate students. METHODS: This approach comprises traditional lectures, the study of clinical cases on the web and a final interactive discussion of these cases in the classroom. When on the web, the students are asked to select laboratory tests that seem most appropriate to understand the pathophysiological condition underlying the clinical case. The percentage of students having chosen a given test is made available to the teacher who uses it in an interactive session to stimulate discussion with the whole class of students. The same teacher used the same case studies during 2 consecutive years during the third year of the curriculum. RESULTS: The majority of students answered the questions on the web as requested and evaluated positively their experience with this form of teaching and learning. CONCLUSIONS: Complementing traditional lectures with online case-based studies and interactive group discussions represents, therefore, a simple means to promote the learning and the understanding of complex pathophysiological mechanisms. This simple problem-based approach to teaching and learning may be implemented to cover all fields of medicine.
Resumo:
Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning.
Resumo:
Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.
Resumo:
A new ambulatory method of monitoring physical activities in Parkinson's disease (PD) patients is proposed based on a portable data-logger with three body-fixed inertial sensors. A group of ten PD patients treated with subthalamic nucleus deep brain stimulation (STN-DBS) and ten normal control subjects followed a protocol of typical daily activities and the whole period of the measurement was recorded by video. Walking periods were recognized using two sensors on shanks and lying periods were detected using a sensor on trunk. By calculating kinematics features of the trunk movements during the transitions between sitting and standing postures and using a statistical classifier, sit-to-stand (SiSt) and stand-to-sit (StSi) transitions were detected and separated from other body movements. Finally, a fuzzy classifier used this information to detect periods of sitting and standing. The proposed method showed a high sensitivity and specificity for the detection of basic body postures allocations: sitting, standing, lying, and walking periods, both in PD patients and healthy subjects. We found significant differences in parameters related to SiSt and StSi transitions between PD patients and controls and also between PD patients with and without STN-DBS turned on. We concluded that our method provides a simple, accurate, and effective means to objectively quantify physical activities in both normal and PD patients and may prove useful to assess the level of motor functions in the latter.
Resumo:
PURPOSE: Afferent asymmetry of visual function is detectable in both normal and pathologic conditions. With a computerized test, we assessed the variability in measuring afferent asymmetry of the pupillary light reflex, that is, the relative afferent pupillary defect. METHODS: In ten normal subjects, pupillary responses to an alternating light stimulus were recorded with computerized infrared pupillography. The relative afferent pupillary defect for each test was determined by using a new computer analysis. The 95% confidence interval of each determination of relative afferent pupillary defect was used to represent the short-term fluctuation in its measurement. To optimize the test for clinical use, we studied the influence of stimulus intensity, duration, and number on the variability of the relative afferent pupillary defect. RESULTS: When the relative afferent pupillary defect was based on only a few light alternations (stimulus pairs), there was excessive variability in its measurement (95% confidence interval > 0.5 log units). With approximately 200 stimulus pairs, the 95% confidence interval was reduced to less than 0.1 log unit (relative afferent pupillary defect +/- 0.05 log unit). Also, there was less variability when the dark interval between alternating light stimulation was less than one second. CONCLUSIONS: Computerized infrared pupillography can standardize the alternating light test and minimize the error in quantifying a relative afferent pupillary defect. A reproducible relative afferent pupillary defect measurement is desirable for defining afferent injury and following the course of disease.
Resumo:
PURPOSE: To investigate magnetization transfer (MT) effects as a new source of contrast for imaging and tracking of peripheral foot nerves. MATERIALS AND METHODS: Two sets of 3D spoiled gradient-echo images acquired with and without a saturation pulse were used to generate MT ratio (MTR) maps of 260 μm in-plane resolution for eight volunteers at 3T. Scan parameters were adjusted to minimize signal loss due to T2 dephasing, and a dedicated coil was used to improve the inherently low signal-to-noise ratio of small voxels. Resulting MTR values in foot nerves were compared with those in surrounding muscle tissue. RESULTS: Average MTR values for muscle (45.5 ± 1.4%) and nerve (21.4 ± 3.1%) were significantly different (P < 0.0001). In general, the difference in MTR values was sufficiently large to allow for intensity-based segmentation and tracking of foot nerves in individual subjects. This procedure was termed MT-based 3D visualization. CONCLUSION: The MTR serves as a new source of contrast for imaging of peripheral foot nerves and provides a means for high spatial resolution tracking of these structures. The proposed methodology is directly applicable on standard clinical MR scanners and could be applied to systemic pathologies, such as diabetes.
Resumo:
Interferences with the Olympus immunoturbidimetric assay for ferritin have been reported because the antibodies used in the immunoassay are derived from rabbits. Rabbits are familiar pets known to be a risk factor for developing heterophilic (or interfering) antibodies. This report shows how the current Olympus Ferritin assay has been improved to eliminate the interference from heterophilic antibodies.
Resumo:
The measurement of rigidity and perseveration respectively gets increasing importance in clinical psychodiagnostics. Recently we have developed a computer-assisted technique which allows to get information about inadequate persisting in psychic processes and behaviour within shortest time and to differentiate between psychopathological groups. 257 patients of both sexes who came for elucidation of their disorders to the department of clinical psychodiagnostics were investigated. The most significant differences between the groups were found in redundance of second degree (the patient has to press 10 buttons indiscriminately according to the beat of a metronom--standard condition) and in personal speed (the patient has to press 10 buttons as fast as possible--speed condition). Furthermore the psychopathological groups were ranged in the particular variables of rigidity according to their mean values and their average ranges the schizophrenics and effective psychoses were characterized by a high tendency of perseveration while the neurotics, patients with organic brain syndrome and alcohol and drug dependents showed more flexibility.
Resumo:
Cooperation among unrelated individuals can arise if decisions to help others can be based on reputation. While working for dyadic interactions, reputation-use in social dilemmas involving many individuals (e.g. public goods games) becomes increasingly difficult as groups become larger and errors more frequent. Reputation is therefore believed to have played a minor role for the evolution of cooperation in collective action dilemmas such as those faced by early humans. Here, we show in computer simulations that a reputation system based on punitive actions can overcome these problems and, compared to reputation system based on generous actions, (i) is more likely to lead to the evolution of cooperation in sizable groups, (ii) more effectively sustains cooperation within larger groups, and (iii) is more robust to errors in reputation assessment. Punishment and punishment reputation could therefore have played crucial roles in the evolution of cooperation within larger groups of humans.
Resumo:
Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available.
Resumo:
A new method of measuring joint angle using a combination of accelerometers and gyroscopes is presented. The method proposes a minimal sensor configuration with one sensor module mounted on each segment. The model is based on estimating the acceleration of the joint center of rotation by placing a pair of virtual sensors on the adjacent segments at the center of rotation. In the proposed technique, joint angles are found without the need for integration, so absolute angles can be obtained which are free from any source of drift. The model considers anatomical aspects and is personalized for each subject prior to each measurement. The method was validated by measuring knee flexion-extension angles of eight subjects, walking at three different speeds, and comparing the results with a reference motion measurement system. The results are very close to those of the reference system presenting very small errors (rms = 1.3, mean = 0.2, SD = 1.1 deg) and excellent correlation coefficients (0.997). The algorithm is able to provide joint angles in real-time, and ready for use in gait analysis. Technically, the system is portable, easily mountable, and can be used for long term monitoring without hindrance to natural activities.
Resumo:
We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
Resumo:
Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images.