135 resultados para Transporting Atpase
Resumo:
The existence of at least three isoforms of Na(+)-K(+)-ATPase in adult brain tissues [alpha 1, kidney type; alpha 2 [or alpha(+)]; alpha 3] suggests that these genes might be regulated in a cell-specific and time-dependent manner during development. We have studied this question in serum-free aggregating cell cultures of mechanically dissociated rat fetal telencephalon. At the protein level, the relative rate of synthesis of the pool of alpha 1-, alpha 2-, and alpha 3-subunits increased approximately twofold over 15 days of culture, leading to a marked increase in the immunochemical pool of alpha-subunits as measured by a panspecific polyclonal antibody. Concomitantly, Na(+)-K(+)-ATPase enzyme-specific activity increased three- (lower forebrain) to sixfold (upper forebrain). The transcripts of all three alpha-isoforms and beta-subunit were detected in vitro in similar proportion to the level observed in vivo. alpha 3-mRNA (3.7 kb) was more abundant than alpha 1 (3.7 kb) or alpha 2 (5.3 and 3.4 kb). Cytosine arabinoside (0.4 microM) and cholera toxin (0.1 microM) were used to selectively eliminate glial cells or neurons, respectively. It was found that alpha 2-mRNA is predominantly transcribed in glial cell cultures, whereas alpha 3- and beta 1-mRNA (2.7, 2.3, and 1.8 kb) are predominant in neuronal cultures.
Resumo:
Many DNA helicases utilise the energy derived from nucleoside triphosphate hydrolysis to fuel their actions as molecular motors in a variety of biological processes. In association with RuvA, the E. coli RuvB protein (a hexameric ring helicase), promotes the branch migration of Holliday junctions during genetic recombination and DNA repair. To analyse the relationship between ATP-dependent DNA helicase activity and branch migration, a site-directed mutation was introduced into the helicase II motif of RuvB. Over-expression of RuvBD113N in wild-type E. coli resulted in a dominant negative UVs phenotype. The biochemical properties of RuvBD113N were examined and compared with wild-type RuvB in vitro. The single amino acid substitution resulted in major alterations to the biochemical activities of RuvB, such that RuvBD113N was defective in DNA binding and ATP hydrolysis, while retaining the ability to form hexameric rings and interact with RuvA. RuvBD113N formed heterohexamers with wild-type RuvB, and could inhibit RuvB function by affecting its ability to bind DNA. However, heterohexamers exhibited an ability to promote branch migration in vitro indicating that not all subunits of the ring need to be catalytically competent.
Resumo:
The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).
Resumo:
Like numerous other eukaryotic organelles, the vacuole of the yeast Saccharomyces cerevisiae undergoes coordinated cycles of membrane fission and fusion in the course of the cell cycle and in adaptation to environmental conditions. Organelle fission and fusion processes must be balanced to ensure organelle integrity. Coordination of vacuole fission and fusion depends on the interactions of vacuolar SNARE proteins and the dynamin-like GTPase Vps1p. Here, we identify a novel factor that impinges on the fusion-fission equilibrium: the vacuolar H(+)-ATPase (V-ATPase) performs two distinct roles in vacuole fission and fusion. Fusion requires the physical presence of the membrane sector of the vacuolar H(+)-ATPase sector, but not its pump activity. Vacuole fission, in contrast, depends on proton translocation by the V-ATPase. Eliminating proton pumping by the V-ATPase either pharmacologically or by conditional or constitutive V-ATPase mutations blocked salt-induced vacuole fragmentation in vivo. In living cells, fission defects are epistatic to fusion defects. Therefore, mutants lacking the V-ATPase display large single vacuoles instead of multiple smaller vacuoles, the phenotype that is generally seen in mutants having defects only in vacuolar fusion. Its dual involvement in vacuole fission and fusion suggests the V-ATPase as a potential regulator of vacuolar morphology and membrane dynamics.
Resumo:
Transepithelial Na+ reabsorption across tight epithelia is regulated by aldosterone. Mineralocorticoids modulate the expression of a number of proteins. Na+,K+-ATPase has been identified as an aldosterone-induced protein (Geering, K., M. Girardet, C. Bron, J. P. Kraehenbuhl, and B. C. Rossier, 1982, J. Biol. Chem., 257:10338-10343). Using A6 cells (kidney of Xenopus laevis) grown on filters we demonstrated by Northern blot analysis that the induction of Na+,K+-ATPase was mainly mediated by a two- to fourfold accumulation of both alpha- and beta-subunit mRNAs. The specific competitor spironolactone decreased basal Na+ transport, Na+,K+-ATPase mRNA, and the relative rate of protein biosynthesis, and it blocked the response to aldosterone. Cycloheximide inhibited the aldosterone-dependent sodium transport but did not significantly affect the cytoplasmic accumulation of Na+,K+-ATPase mRNA induced by aldosterone.
Resumo:
A fetal rat telencephalon organotypic cell culture system was found to reproduce the developmental pattern of Na-K-adenosinetriphosphatase (ATPase) gene expression observed in vivo [Am. J. Physiol. 258 (Cell Physiol. 27): C1062-C1069, 1990]. We have used this culture system to study the effects of triiodothyronine (T3; 0.003-30 nM) on mRNA abundance and basal transcription rates of Na-K-ATPase isoforms. Steady-state mRNA levels were low at culture day 6 (corresponding to the day of birth) but distinct for each isoform alpha 3 much greater than beta 1 = beta 2 greater than alpha 2 greater than alpha 1. At culture day 6, T3 did not modify mRNA abundance of any isoform. At culture day 12 (corresponding to day 7 postnatal), T3 increased the mRNA level of alpha 2 (4- to 7-fold), beta 2 (4- to 5-fold), alpha 1 (3- to 6-fold), and beta 1 (1.5-fold), whereas alpha 3 mRNA levels remained unchanged. Interestingly, the basal transcription rate for each isoform differed strikingly (alpha 2 greater than alpha 1 much greater than beta 1 = beta 2 greater than alpha 3) but remained stable throughout 12 days of culture and was not regulated by T3. Thus we observed an inverse relationship between rate of transcription and rate of mRNA accumulation for each alpha-isoform, suggesting that alpha 1- and alpha 2-mRNA are turning over rapidly whereas alpha 3-mRNA is turning over slowly. Our data indicate that one of the mechanisms by which T3 selectively controls Na-K-ATPase gene expression during brain development in vitro occurs at the posttranscriptional level.
Resumo:
BACKGROUND: The P-type II ATPase gene family encodes proteins with an important role in adaptation of the cell to variation in external K+, Ca2+ and Na2+ concentrations. The presence of P-type II gene subfamilies that are specific for certain kingdoms has been reported but was sometimes contradicted by discovery of previously unknown homologous sequences in newly sequenced genomes. Members of this gene family have been sampled in all of the fungal phyla except the arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), which are known to play a key-role in terrestrial ecosystems and to be genetically highly variable within populations. Here we used highly degenerate primers on AMF genomic DNA to increase the sampling of fungal P-Type II ATPases and to test previous predictions about their evolution. In parallel, homologous sequences of the P-type II ATPases have been used to determine the nature and amount of polymorphism that is present at these loci among isolates of Glomus intraradices harvested from the same field. RESULTS: In this study, four P-type II ATPase sub-families have been isolated from three AMF species. We show that, contrary to previous predictions, P-type IIC ATPases are present in all basal fungal taxa. Additionally, P-Type IIE ATPases should no longer be considered as exclusive to the Ascomycota and the Basidiomycota, since we also demonstrate their presence in the Zygomycota. Finally, a comparison of homologous sequences encoding P-type IID ATPases showed unexpectedly that indel mutations among coding regions, as well as specific gene duplications occur among AMF individuals within the same field. CONCLUSION: On the basis of these results we suggest that the diversification of P-Type IIC and E ATPases followed the diversification of the extant fungal phyla with independent events of gene gains and losses. Consistent with recent findings on the human genome, but at a much smaller geographic scale, we provided evidence that structural genomic changes, such as exonic indel mutations and gene duplications are less rare than previously thought and that these also occur within fungal populations.
Resumo:
The V-ATPase V(0) sector associates with the peripheral V(1) sector to form a proton pump. V(0) alone has an additional function, facilitating membrane fusion in the endocytic and late exocytic pathways. V(0) contains a hexameric proteolipid cylinder, which might support fusion as proposed in proteinaceous pore models. To test this, we randomly mutagenized proteolipids. We recovered alleles that preserve proton translocation, normal SNARE activation and trans-SNARE pairing but that impair lipid and content mixing. Critical residues were found in all subunits of the proteolipid ring. They concentrate within the bilayer, close to the ring subunit interfaces. The fusion-impairing proteolipid substitutions stabilize the interaction of V(0) with V(1). Deletion of the vacuolar v-SNARE Nyv1 has the same effect, suggesting that both types of mutations similarly alter the conformation of V(0). Also covalent linkage of subunits in the proteolipid cylinder blocks vacuole fusion. We propose that a SNARE-dependent conformational change in V(0) proteolipids might stimulate fusion by creating a hydrophobic crevice that promotes lipid reorientation and formation of a lipidic fusion pore.
Resumo:
An Adobe (R) animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na+ and K+ translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P-2c-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E-1/E-2-ATPase as it undergoes conformational changes between the E-1 and E-2 forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger's scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure function relationship. The movements of the various domains within the (Na, K)-ATPase alpha-subunit illustrate the conformational changes that occur during Na+ and K+ translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the "core engine" of the pump, with respect to ATP binding, cation transport, and ADP and P-i release.
Resumo:
In the urinary bladder of the toad Bufo marinus aldosterone (between 0.8 and 100 nM) stimulates Na+ transport [half-maximal induction concentration (K1/2) = 6.5 nM]. At low hormone concentrations (0.8-8 nM), the increase of Na+ transport between 0.75 and 2.5 h is accompanied by a fall in transepithelial resistance (R). Higher hormone concentrations (30-800 nM) induce an additional resistance-independent fraction of Na+ transport within 2.5-8 h. From 6 h on, aldosterone (between 0.2 and 20 nM) stimulates in the same tissue the biosynthesis rate of the alpha- and beta-subunits of Na+-K+-ATPase (K1/2 = 3 and 1.5 nM, respectively). New pump synthesis is thus not a prerequisite for the early mineralocorticoid response but might be linked to the late transport event. The mineralocorticoid response is usually ascribed to interaction with the higher affinity type 1 receptor. In the present study we show, however, that at least 55% of the overall Na+ transport response is linked to nuclear occupation of the lower affinity type 2 receptors [dissociation constant (Kd) = 50 nM, maximum number of binding sites (Nmax) = 315 fmol/mg protein]. Distinct aldosterone effects, such as the fall in R and the increase in Na+-K+-ATPase synthesis, are more closely related to occupation of type 1 receptors (Kd = 0.3 nM, Nmax = 23 fmol/mg protein). At maximal induction of these latter parameters, only about 20% of type 2 receptors are occupied. These results suggest that both types of aldosterone receptors are involved in the mediation of the full mineralocorticoid response: type 1 in the early and late and type 2 particularly in the late tissue response.
Resumo:
The collecting duct of normal kidney exhibits significant activity of the MEK1/2-ERK1/2 pathway as shown in vivo by immunostaining of phosphorylated active ERK1/2 (pERK1/2). The MEK1/2-ERK1/2 pathway controls many different ion transports both in proximal and distal nephron, raising the question of whether this pathway is involved in the basal and/or hormone-dependent transepithelial sodium reabsorption in the principal cell of the cortical collecting duct (CCD), a process mediated by the apical epithelial sodium channel and the basolateral sodium pump (Na,K-ATPase). To answer this question we used ex vivo microdissected CCDs from normal mouse kidney or in vitro cultured mpkCCDcl4 principal cells. Significant basal levels of pERK1/2 were observed ex vivo and in vitro. Aldosterone and vasopressin, known to up-regulate sodium reabsorption in CCDs, did not change ERK1/2 activity either ex vivo or in vitro. Basal and aldosterone- or vasopressin-stimulated sodium transport was down-regulated by the MEK1/2 inhibitor PD98059, in parallel with a decrease in pERK1/2 in vitro. The activity of Na,K-ATPase but not that of epithelial sodium channel was inhibited by MEK1/2 inhibitors in both unstimulated and aldosterone- or vasopressin-stimulated CCDs in vitro. Cell surface biotinylation showed that intrinsic activity rather than cell surface expression of Na,K-ATPase was controlled by pERK1/2. PD98059 also significantly inhibited the activity of Na,K-ATPase ex vivo. Our data demonstrate that the ERK1/2 pathway controls Na,K-ATPase activity and transepithelial sodium transport in the principal cell and indicate that basal constitutive activity of the ERK1/2 pathway is a critical component of this control.
Resumo:
Aldosterone stimulates transepithelial Na+ transport in the toad bladder, and thyroid hormone antagonizes this mineralocorticoid action. In the present study, we assessed the influence of these two hormones on the biosynthesis of (Na+,K+)ATPase, the major driving force of Na+ transport. Rates of enzyme synthesis were estimated by immunoprecipitation with monospecific alpha (96,000 daltons) and beta (60,000 daltons) subunit antibodies. After a 30-min pulse of intact tissue with [35S]methionine, the anti-alpha-serum recognized the 96,000-dalton alpha subunit and the anti-beta-serum, a 42,000-dalton protein, in total cell extracts. The biosynthesis rates of both these proteins were increased 2.8- and 2.4-fold respectively, over controls by 80 nM aldosterone after 18 h of hormone treatment. The hormonal effect was not apparent up to 3 h of incubation and was dose dependent between 0.2 and 20 nM aldosterone. The hormonal induction was antagonized by spironolactone (500-fold excess) but not by amiloride. The action of aldosterone thus seems to be a receptor-mediated process and a primary event independent of the Na+ permeability of the apical membrane. Thyroid hormone, on the other hand, had no effect on either basal or aldosterone-stimulated synthesis rates of both enzyme proteins. The results demonstrate a direct effect of aldosterone on gene expression of the (Na+,K+)-ATPase. Ultimately, this phenomenon could be linked to the late mineralocorticoid action of this hormone. On the other hand, thyroid hormone, in contrast to the situation in mammals, does not stimulate de novo enzyme synthesis in amphibia. Neither can the antimineralocorticoid action of thyroid hormone in the toad bladder be explained by an inhibition of the (Na+,K+)-ATPase synthesis.