95 resultados para Temozolomide
Resumo:
INTRODUCTION: Glioblastoma multiforme (GBM; World Health Organization astrocytoma grade IV) is the most frequent and most malignant primary brain tumor in adults. Despite multimodal therapy, all such tumors practically recur during the course of therapy, causing a median survival of only 14.6 months in patients with newly diagnosed GBM. The present study was aimed at examining the expression of the DNA repair protein AlkB homolog 2 (ALKBH2) in human GBM and determining whether it could promote resistance to temozolomide chemotherapy. METHODS: ALKBH2 expression in GBM cell lines and in human GBM was determined by quantitative real-time PCR (qRT-PCR) and gene expression analysis, respectively. Drug sensitivity was assessed in GBM cells overexpressing ALKBH2 and in cells in which ALKBH2 expression was silenced by small-interfering (si)RNA. ALKBH2 expression following activation of the p53 pathway was examined by western blotting and qRT-PCR. RESULTS: ALKBH2 was abundantly expressed in established GBM cell lines and human GBM, and temozolomide exposure increased cellular ALKBH2 expression levels. Overexpression of ALKBH2 in the U87 and U251 GBM cell lines enhanced resistance to the methylating agents temozolomide and methyl methanesulfonate but not to the nonmethylating agent doxorubicin. Conversely, siRNA-mediated knockdown of ALKBH2 increased sensitivity of GBM cells to temozolomide and methyl methanesulfonate but not to doxorubicin or cisplatin. Nongenotoxic activation of the p53 pathway by the selective murine double minute 2 antagonist nutlin-3 caused a significant decrease in cellular ALKBH2 transcription levels. CONCLUSION: Our findings identify ALKBH2 as a novel mediator of temozolomide resistance in human GBM cells. Furthermore, we place ALKBH2 into a new cellular context by showing its regulation by the p53 pathway.
Resumo:
PURPOSE: In this study, we investigated the mechanisms by which temozolomide enhances radiation response in glioblastoma cells. EXPERIMENTAL DESIGN: Using a panel of four primary human glioblastoma cell lines with heterogeneous O(6)-methylguanine-DNA methyltransferase (MGMT) protein expression, normal human astrocytes, and U87 xenografts, we investigated (a) the relationship of MGMT status with efficacy of temozolomide-based chemoradiation using a panel of in vitro and in vivo assays; (b) underlying mechanisms by which temozolomide enhances radiation effect in glioblastoma cells; and (c) strategies to overcome resistance to radiation + temozolomide. RESULTS: Temozolomide enhances radiation response most effectively in glioblastomas without detectable MGMT expression. On concurrent radiation + temozolomide administration in MGMT-negative glioblastomas, there seems to be decreased double-strand DNA (dsDNA) repair capacity and enhanced dsDNA damage compared either with radiation alone or with sequentially administered temozolomide. Our data suggest that O(6)-benzylguanine can enhance the antitumor effects of concurrent radiation + temozolomide in MGMT-positive cells by enhancing apoptosis and the degree of dsDNA damage. O(6)-Benzylguanine was most effective when administered concurrently with radiation + temozolomide and had less of an effect when administered with temozolomide in the absence of radiation or when administered sequentially with radiation. Our in vivo data using U87 xenografts confirmed our in vitro findings. CONCLUSIONS: The present study shows that temozolomide enhances radiation response most effectively in MGMT-negative glioblastomas by increasing the degree of radiation-induced double-strand DNA damage. In MGMT-positive glioblastomas, depletion of MGMT by the addition of O(6)-benzylguanine significantly enhances the antitumor effect of concurrent radiation + temozolomide. These are among the first data showing mechanisms of synergy between radiation and temozolomide and the effect of MGMT.
Resumo:
Standard care for newly diagnosed glioblastoma multiforme (GBM) previously consisted of resection to the greatest extent feasible, followed by radiotherapy. The role of chemotherapy was controversial and its efficacy was marginal at best. Five years ago temozolomide (TMZ) was approved specifically for the treatment of recurrent malignant glioma. The role of TMZ chemotherapy administered alone or as an adjuvant therapy for newly diagnosed GBM has been evaluated in a large randomized trial whose results suggested a significant prolongation of survival following treatment. Findings of correlative molecular studies have indicated that methylguanine methyltransferase promoter methylation may be used as a predictive factor in selecting patients most likely to benefit from such treatment. In this short review the authors summarize the current role of TMZ chemotherapy in the management of GBM, with an emphasis on approved indications and practical aspects.
Resumo:
Cilengitide is a cyclic peptide antagonist of integrins alphavbeta3 and alphavbeta5 that is currently being evaluated as a novel therapeutic agent for recurrent and newly diagnosed glioblastoma. Its mode of action is thought to be mainly antiangiogenic but may include direct effects on tumor cells, notably on attachment, migration, invasion, and viability. In this study we found that, at clinically relevant concentrations, cilengitide (1-100 microM) induces detachment in some but not all glioma cell lines, while the effect on cell viability is modest. Detachment induced by cilengitide could not be predicted by the level of expression of the cilengitide target molecules, alphavbeta3 and alphavbeta5, at the cell surface. Glioma cell death induced by cilengitide was associated with the generation of caspase activity, but caspase activity was not required for cell death since ectopic expression of cytokine response modifier (crm)-A or coexposure to the broad-spectrum caspase inhibitor zVAD-fmk was not protective. Moreover, forced expression of the antiapoptotic protein marker Bcl-X(L) or altering the p53 status did not modulate cilengitide-induced cell death. No consistent effects of cilengitide on glioma cell migration or invasiveness were observed in vitro. Preliminary clinical results indicate a preferential benefit from cilengitide added to temozolomide-based radiochemotherapy in patients with O(6)-methylguanine DNA methyltransferase (MGMT) gene promoter methylation. Accordingly, we also examined whether the MGMT status determines glioma cell responses to cilengitide alone or in combination with temozolomide. Neither ectopic expression of MGMT in MGMT-negative cells nor silencing the MGMT gene in MGMT-positive cells altered glioma cell responses to cilengitide alone or to cilengitide in combination with temozolomide. These data suggest that the beneficial clinical effects derived from cilengitide in vivo may arise from altered perfusion, which promotes temozolomide delivery to glioma cells.
Resumo:
BACKGROUND: Most patients with glioblastoma are older than 60 years, but treatment guidelines are based on trials in patients aged only up to 70 years. We did a randomised trial to assess the optimum palliative treatment in patients aged 60 years and older with glioblastoma. METHODS: Patients with newly diagnosed glioblastoma were recruited from Austria, Denmark, France, Norway, Sweden, Switzerland, and Turkey. They were assigned by a computer-generated randomisation schedule, stratified by centre, to receive temozolomide (200 mg/m(2) on days 1-5 of every 28 days for up to six cycles), hypofractionated radiotherapy (34·0 Gy administered in 3·4 Gy fractions over 2 weeks), or standard radiotherapy (60·0 Gy administered in 2·0 Gy fractions over 6 weeks). Patients and study staff were aware of treatment assignment. The primary endpoint was overall survival. Analyses were done by intention to treat. This trial is registered, number ISRCTN81470623. FINDINGS: 342 patients were enrolled, of whom 291 were randomised across three treatment groups (temozolomide n=93, hypofractionated radiotherapy n=98, standard radiotherapy n=100) and 51 of whom were randomised across only two groups (temozolomide n=26, hypofractionated radiotherapy n=25). In the three-group randomisation, in comparison with standard radiotherapy, median overall survival was significantly longer with temozolomide (8·3 months [95% CI 7·1-9·5; n=93] vs 6·0 months [95% CI 5·1-6·8; n=100], hazard ratio [HR] 0·70; 95% CI 0·52-0·93, p=0·01), but not with hypofractionated radiotherapy (7·5 months [6·5-8·6; n=98], HR 0·85 [0·64-1·12], p=0·24). For all patients who received temozolomide or hypofractionated radiotherapy (n=242) overall survival was similar (8·4 months [7·3-9·4; n=119] vs 7·4 months [6·4-8·4; n=123]; HR 0·82, 95% CI 0·63-1·06; p=0·12). For age older than 70 years, survival was better with temozolomide and with hypofractionated radiotherapy than with standard radiotherapy (HR for temozolomide vs standard radiotherapy 0·35 [0·21-0·56], p<0·0001; HR for hypofractionated vs standard radiotherapy 0·59 [95% CI 0·37-0·93], p=0·02). Patients treated with temozolomide who had tumour MGMT promoter methylation had significantly longer survival than those without MGMT promoter methylation (9·7 months [95% CI 8·0-11·4] vs 6·8 months [5·9-7·7]; HR 0·56 [95% CI 0·34-0·93], p=0·02), but no difference was noted between those with methylated and unmethylated MGMT promoter treated with radiotherapy (HR 0·97 [95% CI 0·69-1·38]; p=0·81). As expected, the most common grade 3-4 adverse events in the temozolomide group were neutropenia (n=12) and thrombocytopenia (n=18). Grade 3-5 infections in all randomisation groups were reported in 18 patients. Two patients had fatal infections (one in the temozolomide group and one in the standard radiotherapy group) and one in the temozolomide group with grade 2 thrombocytopenia died from complications after surgery for a gastrointestinal bleed. INTERPRETATION: Standard radiotherapy was associated with poor outcomes, especially in patients older than 70 years. Both temozolomide and hypofractionated radiotherapy should be considered as standard treatment options in elderly patients with glioblastoma. MGMT promoter methylation status might be a useful predictive marker for benefit from temozolomide. FUNDING: Merck, Lion's Cancer Research Foundation, University of Umeå, and the Swedish Cancer Society.
Resumo:
Background: Single agent DTIC is the standard therapy for metastatic melanoma (MM) with response rates of 5−20%. Temozolomide (Tem) as an oral drug has shown equal efficacy in phase III trials. Preclinical models have shown an inhibitory effect for bevacizumab (Bev) on the proliferation of melanoma cells as well as on sprouting endothelial cells. Therefore, a therapeutic approach that combines angiogenesis inhibitors with cytotoxic agents may provide clinical benefit in MM. Methods: Design: Multicenter phase II trial. Primary endpoint: Clinical benefit (CR, PR and SD) at 12 weeks; secondary endpoints: best overall response by RECIST, response duration, progression free survival, adverse events, survival after 6 months and overall survival. Sample size was calculated according to Simon's two stage optimal design (5% significance level and 80% power) with an overall sample size of 62 patients (pts) to test H0: 20% versus H1: 35% rate of clinical benefit. Response assessment was done every 6 weeks (3 cycles). Eligibility: Stage IV MM, ECOG PS 0−2, no prior treatment for metastatic disease. Treatment regimen: One cycle consisted of Tem at 150 mg/m2 days 1−7 po and Bev at 10 mg/kg day 1 over 30 min iv and was repeated every 2 weeks until progression or unacceptable toxicity. Results: Between January 2008 and April 2009, 62 pts (40 male/22 female) at a median age of 61 years (range 30−86) with stage IV (M1a:4, M1b:12, M1c:46) melanoma were enrolled in 9 centers. The first 50 pts, who received 415 cycles are included in this interim report. The overall response rate was 26% (CR: 1 pt, PR: 12 pts; PR not confirmed yet in 3 pts), and 44% (22 pts) had stable disease over 1.5−7.5 months (median: 3). Only 30% (15 pts) had disease progression at the first evaluation at week 6. The hematological grade 3/4 toxicities according to NCI CTAE 3.0 were thrombocytopenia 10% (5 pts), neutropenia 8% (4 pts), lymphopenia and leucocytopenia each 2% (1 pt). Cumulative non-hematological toxicities grade 3/4 were nausea and fatigue each 6% (3 pts), hypertension, vomiting and hemorrhage, each 4% (2 pts), thrombosis/embolism, infection, constipation, anorexia, elevation of alkaline phosphatase, bilirubin, GGT, ALT and AST each 2% (1 pt). Conclusion: In metastatic melanoma the combination of Tem/Bev is a safe regimen with a promising efficacy and few grade 3/4 toxicities. Updated results of all 62 pts will be presented.
Resumo:
The O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical trials with temozolomide plus bevacizumab therapy in metastatic melanoma patients are ongoing, although the predictive value of the MGMT promoter methylation status in this setting remains unclear. We assessed MGMT promoter methylation in formalin-fixed, primary tumor tissue of metastatic melanoma patients treated with first-line temozolomide and bevacizumab from the trial SAKK 50/07 by methylation-specific polymerase chain reaction. In addition, the MGMT expression levels were also analyzed by MGMT immunohistochemistry. Eleven of 42 primary melanomas (26%) revealed a methylated MGMT promoter. Promoter methylation was significantly associated with response rates CR + PR versus SD + PD according to RECIST (response evaluation criteria in solid tumors) (p<0.05) with a trend to prolonged median progression-free survival (8.1 versus 3.4 months, p>0.05). Immunohistochemically different protein expression patterns with heterogeneous and homogeneous nuclear MGMT expression were identified. Negative MGMT expression levels were associated with overall disease stabilization CR + PR + SD versus PD (p=0.05). There was only a poor correlation between MGMT methylation and lack of MGMT expression. A significant proportion of melanomas have a methylated MGMT promoter. The MGMT promoter methylation status may be a promising predictive marker for temozolomide therapy in metastatic melanoma patients. Larger sample sizes may help to validate significant differences in survival type endpoints.
Resumo:
PURPOSE: The European Organisation for Research and Treatment of Cancer and National Cancer Institute of Canada trial on temozolomide (TMZ) and radiotherapy (RT) in glioblastoma (GBM) has demonstrated that the combination of TMZ and RT conferred a significant and meaningful survival advantage compared with RT alone. We evaluated in this trial whether the recursive partitioning analysis (RPA) retains its overall prognostic value and what the benefit of the combined modality is in each RPA class. PATIENTS AND METHODS: Five hundred seventy-three patients with newly diagnosed GBM were randomly assigned to standard postoperative RT or to the same RT with concomitant TMZ followed by adjuvant TMZ. The primary end point was overall survival. The European Organisation for Research and Treatment of Cancer RPA used accounts for age, WHO performance status, extent of surgery, and the Mini-Mental Status Examination. RESULTS: Overall survival was statistically different among RPA classes III, IV, and V, with median survival times of 17, 15, and 10 months, respectively, and 2-year survival rates of 32%, 19%, and 11%, respectively (P < .0001). Survival with combined TMZ/RT was higher in RPA class III, with 21 months median survival time and a 43% 2-year survival rate, versus 15 months and 20% for RT alone (P = .006). In RPA class IV, the survival advantage remained significant, with median survival times of 16 v 13 months, respectively, and 2-year survival rates of 28% v 11%, respectively (P = .0001). In RPA class V, however, the survival advantage of RT/TMZ was of borderline significance (P = .054). CONCLUSION: RPA retains its prognostic significance overall as well as in patients receiving RT with or without TMZ for newly diagnosed GBM, particularly in classes III and IV.
Resumo:
BACKGROUND: Despite advances in treatment, survival of patients with GBM over 60 years is still often less than 1 year. In the perspective of a short expected survival, the quality of the remaining life and the effects of therapy on health-related quality of life (HRQoL) should be given special emphasis when recommending treatment for the individual patients. Several studies have focused on survival of the elderly, but few data are available on HRQoL for different treatments. In a randomized trial, we compared survival and HRQoL for 3 treatment options, 6 weeks of RT, vs hypofractionated RT, or chemotherapy with TMZ. MATERIALS AND METHODS: Newly diagnosed GBM patients, age ≥60 years with PS 0-2, were randomized to either standard RT (60 Gy in 2-Gy fractions over 6 weeks), hypofractionated RT (34 Gy in 3.4-Gy fractions over 2 weeks), or 6 cycles of chemotherapy with TMZ (200 mg/m2 day 1-5 every 28 days). QoL was determined by the EORTC QLQ 30 questionnaire and the Brain Cancer Module at inclusion, before start of therapy, at 6 weeks, 3 months, and 6 months after start of treatment. Patients were followed until death. The primary study endpoint was overall survival (OS) and secondary objectives were HRQoL, neurologic symptom control, and safety. RESULTS: A total of 342 patients were included and 292 patients were randomized between the 3 treatment options and 50 patients between hypofractionated RT and TMZ. Median age was 70 years (range 60-92) with 58% being male. Performance status was 0-1 for 75% of patients and 73% had undergone surgical resection. CONCLUSION: The results from the HRQoL analysis of this trial will be presented together with survival data at the upcoming EANO meeting.
Resumo:
BACKGROUND: Patients with BM rarely survive .6 months and are commonly excluded from clinical trials. We aimed at improving outcome by exploring 2 combined modality regimens with at the time novel agents for which single-agent activity had been shown. METHODS: NSCLC patients with multiple BM were randomized to WBRT (10 × 3 Gy) and either GFT 250 mg p.o. daily or TMZ 75 mg/m2 p.o. daily ×21/28 days, starting on Day 1 of RT and to be continued until PD. Primary endpoint was overall survival, a Simon's optimal 2-stage design was based on assumptions for the 3-month survival rate. Cognitive functioning and quality of life were also evaluated. RESULTS: Fifty-nine patients (36 M, 23 F; 9 after prior chemo) were included. Median age was 61 years (range 46-82), WHO PS was 0 in 18 patients, 1 in 31 patients, and 2 in 10 patients. All but 1 patients had extracranial disease; 33 of 43 (TMZ) and 15 of 16 (GFT) had adenocarcinoma histology. GFT arm was closed early after stage 1 analysis when the prespecified 3-mo survival rate threshold (66%) was not reached, causes of death were not GFT related. Main causes of death were PD in the CNS 24%, systemic 41%, both 8%, and toxicity 10% [intestinal perforation (2 patients), pneumonia (2), pulmonary emboli (1), pneumonitis NOS (1), seizure (1)]. We summarize here other patients' characteristics for the 2 trial arms: TMZ (n ¼ 43)/GFT (n ¼ 16); median treatment duration: 1.6 /1.8 mo; Grade 3-4 toxicity: lymphopenia 5 patients (12%)/0; fatigue 8 patients (19%)/2 patients (13%). Survival data for TMZ/GFT arms: 3-month survival rate: 58.1% (95% CI 42.1-73)/62.5% (95% CI 35- 85); median OS: 4.9 months (95% CI 2.5-5.6)/6.3 months (95% CI 2.2- 14.6); median PFS: 1.8 months (95% CI 1.5-1.8)/1.8 (95% CI 1.1-3.9); median time to neurol. progr.: 8.0 months (95% CI 2.2-X)/4.8 (95% CI 3.9-10.5). In a model to predict survival time including the variables' age, PS, number of BM, global QL, total MMSE score, and subjective cognitive function, none of the variables accounted for a significant improvement in survival time. CONCLUSIONS: The combinations of WBRT with GFT or TMZ were feasible. However, in this unselected patient population, survival remains poor and a high rate of complication was observed. Four patients died as a result of high-dose corticosteroids. Preliminary evaluation of cognitive function andQL failed to show significant improvement. Indications and patient selection for palliative treatment should be revisited and careful monitoring and supportive care is required. Research and progress for this frequent clinical situation is urgently needed. Trial partly supported by AstraZeneca (Switzerland), Essex Chemie (Switzerland) and Swiss Federal Government.
Resumo:
PURPOSE: Rechallenge with temozolomide (TMZ) at first progression of glioblastoma after temozolomide chemoradiotherapy (TMZ/RT→TMZ) has been studied in retrospective and single-arm prospective studies, applying temozolomide continuously or using 7/14 or 21/28 days schedules. The DIRECTOR trial sought to show superiority of the 7/14 regimen. EXPERIMENTAL DESIGN: Patients with glioblastoma at first progression after TMZ/RT→TMZ and at least two maintenance temozolomide cycles were randomized to Arm A [one week on (120 mg/m(2) per day)/one week off] or Arm B [3 weeks on (80 mg/m(2) per day)/one week off]. The primary endpoint was median time-to-treatment failure (TTF) defined as progression, premature temozolomide discontinuation for toxicity, or death from any cause. O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation was prospectively assessed by methylation-specific PCR. RESULTS: Because of withdrawal of support, the trial was prematurely closed to accrual after 105 patients. There was a similar outcome in both arms for median TTF [A: 1.8 months; 95% confidence intervals (CI), 1.8-3.2 vs. B: 2.0 months; 95% CI, 1.8-3.5] and overall survival [A: 9.8 months (95% CI, 6.7-13.0) vs. B: 10.6 months (95% CI, 8.1-11.6)]. Median TTF in patients with MGMT-methylated tumors was 3.2 months (95% CI, 1.8-7.4) versus 1.8 months (95% CI, 1.8-2) in MGMT-unmethylated glioblastoma. Progression-free survival rates at 6 months (PFS-6) were 39.7% with versus 6.9% without MGMT promoter methylation. CONCLUSIONS: Temozolomide rechallenge is a treatment option for MGMT promoter-methylated recurrent glioblastoma. Alternative strategies need to be considered for patients with progressive glioblastoma without MGMT promoter methylation.
Pharmacokinetics of temozolomide : a pilot study in malignant melanoma and malignant glioma patients
Resumo:
IMPORTANCE: Glioblastoma is the most devastating primary malignancy of the central nervous system in adults. Most patients die within 1 to 2 years of diagnosis. Tumor-treating fields (TTFields) are a locoregionally delivered antimitotic treatment that interferes with cell division and organelle assembly. OBJECTIVE: To evaluate the efficacy and safety of TTFields used in combination with temozolomide maintenance treatment after chemoradiation therapy for patients with glioblastoma. DESIGN, SETTING, AND PARTICIPANTS: After completion of chemoradiotherapy, patients with glioblastoma were randomized (2:1) to receive maintenance treatment with either TTFields plus temozolomide (n = 466) or temozolomide alone (n = 229) (median time from diagnosis to randomization, 3.8 months in both groups). The study enrolled 695 of the planned 700 patients between July 2009 and November 2014 at 83 centers in the United States, Canada, Europe, Israel, and South Korea. The trial was terminated based on the results of this planned interim analysis. INTERVENTIONS: Treatment with TTFields was delivered continuously (>18 hours/day) via 4 transducer arrays placed on the shaved scalp and connected to a portable medical device. Temozolomide (150-200 mg/m2/d) was given for 5 days of each 28-day cycle. MAIN OUTCOMES AND MEASURES: The primary end point was progression-free survival in the intent-to-treat population (significance threshold of .01) with overall survival in the per-protocol population (n = 280) as a powered secondary end point (significance threshold of .006). This prespecified interim analysis was to be conducted on the first 315 patients after at least 18 months of follow-up. RESULTS: The interim analysis included 210 patients randomized to TTFields plus temozolomide and 105 randomized to temozolomide alone, and was conducted at a median follow-up of 38 months (range, 18-60 months). Median progression-free survival in the intent-to-treat population was 7.1 months (95% CI, 5.9-8.2 months) in the TTFields plus temozolomide group and 4.0 months (95% CI, 3.3-5.2 months) in the temozolomide alone group (hazard ratio [HR], 0.62 [98.7% CI, 0.43-0.89]; P = .001). Median overall survival in the per-protocol population was 20.5 months (95% CI, 16.7-25.0 months) in the TTFields plus temozolomide group (n = 196) and 15.6 months (95% CI, 13.3-19.1 months) in the temozolomide alone group (n = 84) (HR, 0.64 [99.4% CI, 0.42-0.98]; P = .004). CONCLUSIONS AND RELEVANCE: In this interim analysis of 315 patients with glioblastoma who had completed standard chemoradiation therapy, adding TTFields to maintenance temozolomide chemotherapy significantly prolonged progression-free and overall survival. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00916409.