98 resultados para Solid mechanics
Resumo:
With the advent of highly active antiretroviral therapy (HAART), HIV infection has become a chronic disease. Various end-stage organ failures have now become common co-morbidities and are primary causes of mortality in HIV-infected patients. Solid-organ transplantation therefore has been proposed to these patients, as HIV infection is not anymore considered an absolute contraindication. The initial results of organ transplantation in HIV-infected patients are encouraging with no differences in patient and graft survival compared with non-HIV-infected patients. The use of immunosuppressive drug therapy in HIV-infected patients has so far not shown major detrimental effects, and some drugs in combination with HAART have even demonstrated possible beneficial effects for specific HIV settings. Nevertheless, organ transplantation in HIV-infected patients remains a complex intervention, and more studies will be required to clarify open questions such as long-term effects of drug interactions between antiretroviral and immunosuppressive drugs, outcome of recurrent HCV infection in HIV-infected patients, incidence of graft rejection, or long-term graft and patient survival. In this article, we first review the immunological pathogenesis of HIV infection and the rationale for using immunosuppression combined with HAART. We then discuss the most recent results of solid-organ transplantation in HIV-infected patients.
Resumo:
The Helvetic nappe system in Western Switzerland is a stack of fold nappes and thrust sheets em-placed at low grade metamorphism. Fold nappes and thrust sheets are also some of the most common features in orogens. Fold nappes are kilometer scaled recumbent folds which feature a weakly deformed normal limb and an intensely deformed overturned limb. Thrust sheets on the other hand are characterized by the absence of overturned limb and can be defined as almost rigid blocks of crust that are displaced sub-horizontally over up to several tens of kilometers. The Morcles and Doldenhom nappe are classic examples of fold nappes and constitute the so-called infra-Helvetic complex in Western and Central Switzerland, respectively. This complex is overridden by thrust sheets such as the Diablerets and Wildhörn nappes in Western Switzerland. One of the most famous example of thrust sheets worldwide is the Glariis thrust sheet in Central Switzerland which features over 35 kilometers of thrusting which are accommodated by a ~1 m thick shear zone. Since the works of the early Alpine geologist such as Heim and Lugeon, the knowledge of these nappes has been steadily refined and today the geometry and kinematics of the Helvetic nappe system is generally agreed upon. However, despite the extensive knowledge we have today of the kinematics of fold nappes and thrust sheets, the mechanical process leading to the emplacement of these nappe is still poorly understood. For a long time geologist were facing the so-called 'mechanical paradox' which arises from the fact that a block of rock several kilometers high and tens of kilometers long (i.e. nappe) would break internally rather than start moving on a low angle plane. Several solutions were proposed to solve this apparent paradox. Certainly the most successful is the theory of critical wedges (e.g. Chappie 1978; Dahlen, 1984). In this theory the orogen is considered as a whole and this change of scale allows thrust sheet like structures to form while being consistent with mechanics. However this theoiy is intricately linked to brittle rheology and fold nappes, which are inherently ductile structures, cannot be created in these models. When considering the problem of nappe emplacement from the perspective of ductile rheology the problem of strain localization arises. The aim of this thesis was to develop and apply models based on continuum mechanics and integrating heat transfer to understand the emplacement of nappes. Models were solved either analytically or numerically. In the first two papers of this thesis we derived a simple model which describes channel flow in a homogeneous material with temperature dependent viscosity. We applied this model to the Morcles fold nappe and to several kilometer-scale shear zones worldwide. In the last paper we zoomed out and studied the tectonics of (i) ductile and (ii) visco-elasto-plastic and temperature dependent wedges. In this last paper we focused on the relationship between basement and cover deformation. We demonstrated that during the compression of a ductile passive margin both fold nappes and thrust sheets can develop and that these apparently different structures constitute two end-members of a single structure (i.e. nappe). The transition from fold nappe to thrust sheet is to first order controlled by the deformation of the basement. -- Le système des nappes helvétiques en Suisse occidentale est un empilement de nappes de plis et de nappes de charriage qui se sont mis en place à faible grade métamorphique. Les nappes de plis et les nappes de charriage sont parmi les objets géologiques les plus communs dans les orogènes. Les nappes de plis sont des plis couchés d'échelle kilométrique caractérisés par un flanc normal faiblement défor-mé, au contraire de leur flanc inverse, intensément déformé. Les nappes de charriage, à l'inverse se caractérisent par l'absence d'un flanc inverse bien défini. Elles peuvent être définies comme des blocs de croûte terrestre qui se déplacent de manière presque rigide qui sont déplacés sub-horizontalement jusqu'à plusieurs dizaines de kilomètres. La nappe de Mordes et la nappe du Doldenhorn sont des exemples classiques de nappes de plis et constitue le complexe infra-helvétique en Suisse occidentale et centrale, respectivement. Ce complexe repose sous des nappes de charriages telles les nappes des Diablerets et du Widlhörn en Suisse occidentale. La nappe du Glariis en Suisse centrale se distingue par un déplacement de plus de 35 kilomètres qui s'est effectué à la faveur d'une zone de cisaillement basale épaisse de seulement 1 mètre. Aujourd'hui la géométrie et la cinématique des nappes alpines fait l'objet d'un consensus général. Malgré cela, les processus mécaniques par lesquels ces nappes se sont mises en place restent mal compris. Pendant toute la première moitié du vingtième siècle les géologues les géologues ont été confrontés au «paradoxe mécanique». Celui-ci survient du fait qu'un bloc de roche haut de plusieurs kilomètres et long de plusieurs dizaines de kilomètres (i.e., une nappe) se fracturera de l'intérieur plutôt que de se déplacer sur une surface frictionnelle. Plusieurs solutions ont été proposées pour contourner cet apparent paradoxe. La solution la plus populaire est la théorie des prismes d'accrétion critiques (par exemple Chappie, 1978 ; Dahlen, 1984). Dans le cadre de cette théorie l'orogène est considéré dans son ensemble et ce simple changement d'échelle solutionne le paradoxe mécanique (la fracturation interne de l'orogène correspond aux nappes). Cette théorie est étroitement lié à la rhéologie cassante et par conséquent des nappes de plis ne peuvent pas créer au sein d'un prisme critique. Le but de cette thèse était de développer et d'appliquer des modèles basés sur la théorie de la méca-nique des milieux continus et sur les transferts de chaleur pour comprendre l'emplacement des nappes. Ces modèles ont été solutionnés de manière analytique ou numérique. Dans les deux premiers articles présentés dans ce mémoire nous avons dérivé un modèle d'écoulement dans un chenal d'un matériel homogène dont la viscosité dépend de la température. Nous avons appliqué ce modèle à la nappe de Mordes et à plusieurs zone de cisaillement d'échelle kilométrique provenant de différents orogènes a travers le monde. Dans le dernier article nous avons considéré le problème à l'échelle de l'orogène et avons étudié la tectonique de prismes (i) ductiles, et (ii) visco-élasto-plastiques en considérant les transferts de chaleur. Nous avons démontré que durant la compression d'une marge passive ductile, a la fois des nappes de plis et des nappes de charriages peuvent se développer. Nous avons aussi démontré que nappes de plis et de charriages sont deux cas extrêmes d'une même structure (i.e. nappe) La transition entre le développement d'une nappe de pli ou d'une nappe de charriage est contrôlé au premier ordre par la déformation du socle. -- Le système des nappes helvétiques en Suisse occidentale est un emblement de nappes de plis et de nappes de chaînage qui se sont mis en place à faible grade métamoiphique. Les nappes de plis et les nappes de charriage sont parmi les objets géologiques les plus communs dans les orogènes. Les nappes de plis sont des plis couchés d'échelle kilométrique caractérisés par un flanc normal faiblement déformé, au contraire de leur flanc inverse, intensément déformé. Les nappes de charriage, à l'inverse se caractérisent par l'absence d'un flanc inverse bien défini. Elles peuvent être définies comme des blocs de croûte terrestre qui se déplacent de manière presque rigide qui sont déplacés sub-horizontalement jusqu'à plusieurs dizaines de kilomètres. La nappe de Morcles and la nappe du Doldenhorn sont des exemples classiques de nappes de plis et constitue le complexe infra-helvétique en Suisse occidentale et centrale, respectivement. Ce complexe repose sous des nappes de charriages telles les nappes des Diablerets et du Widlhörn en Suisse occidentale. La nappe du Glarüs en Suisse centrale est certainement l'exemple de nappe de charriage le plus célèbre au monde. Elle se distingue par un déplacement de plus de 35 kilomètres qui s'est effectué à la faveur d'une zone de cisaillement basale épaisse de seulement 1 mètre. La géométrie et la cinématique des nappes alpines fait l'objet d'un consensus général parmi les géologues. Au contraire les processus physiques par lesquels ces nappes sont mises en place reste mal compris. Les sédiments qui forment les nappes alpines se sont déposés à l'ère secondaire et à l'ère tertiaire sur le socle de la marge européenne qui a été étiré durant l'ouverture de l'océan Téthys. Lors de la fermeture de la Téthys, qui donnera naissance aux Alpes, le socle et les sédiments de la marge européenne ont été déformés pour former les nappes alpines. Le but de cette thèse était de développer et d'appliquer des modèles basés sur la théorie de la mécanique des milieux continus et sur les transferts de chaleur pour comprendre l'emplacement des nappes. Ces modèles ont été solutionnés de manière analytique ou numérique. Dans les deux premiers articles présentés dans ce mémoire nous nous sommes intéressés à la localisation de la déformation à l'échelle d'une nappe. Nous avons appliqué le modèle développé à la nappe de Morcles et à plusieurs zones de cisaillement provenant de différents orogènes à travers le monde. Dans le dernier article nous avons étudié la relation entre la déformation du socle et la défonnation des sédiments. Nous avons démontré que nappe de plis et nappes de charriages constituent les cas extrêmes d'un continuum. La transition entre nappe de pli et nappe de charriage est intrinsèquement lié à la déformation du socle sur lequel les sédiments reposent.
Resumo:
Valganciclovir (VGC) is an oral prodrug of ganciclovir (GCV) recently introduced for prophylaxis and treatment of cytomegalovirus infection. Optimal concentration exposure for effective and safe VGC therapy would require either reproducible VGC absorption and GCV disposition or dosage adjustment based on therapeutic drug monitoring (TDM). We examined GCV population pharmacokinetics in solid organ transplant recipients receiving oral VGC, including the influence of clinical factors, the magnitude of variability, and its impact on efficacy and tolerability. Nonlinear mixed effect model (NONMEM) analysis was performed on plasma samples from 65 transplant recipients under VGC prophylaxis or treatment. A two-compartment model with first-order absorption appropriately described the data. Systemic clearance was markedly influenced by the glomerular filtration rate (GFR), patient gender, and graft type (clearance/GFR = 1.7 in kidney, 0.9 in heart, and 1.2 in lung and liver recipients) with interpatient and interoccasion variabilities of 26 and 12%, respectively. Body weight and sex influenced central volume of distribution (V(1) = 0.34 liter/kg in males and 0.27 liter/kg in females [20% interpatient variability]). No significant drug interaction was detected. The good prophylactic efficacy and tolerability of VGC precluded the demonstration of any relationship with GCV concentrations. In conclusion, this analysis highlights the importance of thorough adjustment of VGC dosage to renal function and body weight. Considering the good predictability and reproducibility of the GCV profile after treatment with oral VGC, routine TDM does not appear to be clinically indicated in solid-organ transplant recipients. However, GCV plasma measurement may still be helpful in specific clinical situations.
Resumo:
A solid-phase enzyme immunoassay using both mouse monoclonal and goat polyclonal antibodies against carcinoembryonic antigen (CEA) was developed. The assay detects 0.6 to 1.2 ng of CEA per ml of serum and has 3 incubation steps which can be performed in 1 day. Polystyrene balls coated with polyclonal goat anti-CEA antibodies are first incubated with heat-extracted serum samples. Bound CEA is then detected by addition of mouse monoclonal antibodies, followed by goat IgG anti-mouse IgG1 coupled to alkaline phosphatase. Results with this enzyme immunoassay using monoclonal antibodies (M-EIA) have been compared with those obtained by the conventional inhibition radioimmunoassay (RIA) using goat antiserum. Three hundred and eighty serum samples from 167 patients with malignant or non-malignant diseases and from 134 normal individuals with or without heavy smoking habits were analyzed by the 2 assays. Excellent correlation between the results of the 2 assays was obtained, but the M-EIA, using monoclonal antibodies from a single hybridoma, did not discriminate better than the conventional RIA between CEA produced by different types of carcinoma and between CEA associated with malignant or non-malignant diseases. Follow-up studies of several patients by sequential CEA determinations with the 2 assays showed that the M-EIA was as accurate as the RIA for the detection of tumor recurrences.
Resumo:
BACKGROUND: Cytomegalovirus (CMV) replication has been associated with more risk for solid organ graft rejection. We wondered whether this association still holds when patients at risk receive prophylactic treatment for CMV. METHODS: We correlated CMV infection, biopsy-proven graft rejection, and graft loss in 1,414 patients receiving heart (n=97), kidney (n=917), liver (n=237), or lung (n=163) allografts reported to the Swiss Transplant Cohort Study. RESULTS: Recipients of all organs were at an increased risk for biopsy-proven graft rejection within 4 weeks after detection of CMV replication (hazard ratio [HR] after heart transplantation, 2.60; 95% confidence interval [CI], 1.34-4.94, P<0.001; HR after kidney transplantation, 1.58; 95% CI, 1.16-2.16, P=0.02; HR after liver transplantation, 2.21; 95% CI, 1.53-3.17, P<0.001; HR after lung transplantation, 5.83; 95% CI, 3.12-10.9, P<0.001. Relative hazards were comparable in patients with asymptomatic or symptomatic CMV infection. The CMV donor or recipient serological constellation also predicted the incidence of graft rejection after liver and lung transplantation, with significantly higher rates of rejection in transplants in which donor or recipient were CMV seropositive (non-D-/R-), compared with D- transplant or R- transplant (HR, 3.05; P=0.002 for liver and HR, 2.42; P=0.01 for lung transplants). Finally, graft loss occurred more frequently in non-D- or non-R- compared with D- transplant or R- transplant in all organs analyzed. Valganciclovir prophylactic treatment seemed to delay, but not prevent, graft loss in non-D- or non-R- transplants. CONCLUSION: Cytomegalovirus replication and donor or recipient seroconstellation remains associated with graft rejection and graft loss in the era of prophylactic CMV treatment.
Resumo:
Primary cutaneous posttransplant lymphoproliferative disorders (PTLD) are rare. This retrospective, multicenter study of 35 cases aimed to better describe this entity. Cases were (re)-classified according to the WHO-EORTC or the WHO 2008 classifications of lymphomas. Median interval between first transplantation and diagnosis was 85 months. Fifty-seven percent of patients had a kidney transplant. Twenty-four cases (68.6%) were classified as primary cutaneous T cell lymphoma (CTCL) and 11 (31.4%) as primary cutaneous B cell PTLD. Mycosis fungoides (MF) was the most common (50%) CTCL subtype. Ten (90.9%) cutaneous B cell PTLD cases were classified as EBV-associated B cell lymphoproliferations (including one plasmablastic lymphoma and one lymphomatoid granulomatosis) and one as diffuse large B cell lymphoma, other, that was EBV-negative. Sixteen (45.7%) patients died after a median follow-up of 19.5 months (11 [68.8%] with CTCL [6 of whom had CD30(+) lymphoproliferative disorders (LPD)] and 5 [31.2%] with cutaneous B cell PTLD. Median survival times for all patients, CTCL and cutaneous B cell PTLD subgroups were 93, 93, and 112 months, respectively. Survival rates for MF were higher than those for CD30(+) LPD. The spectrum of primary CTCL in organ transplant recipients (OTR) is similar to that in the general population. The prognosis of posttransplant primary cutaneous CD30(+) LPD is worse than posttransplant MF and than its counterpart in the immunocompetent population. EBV-associated cutaneous B cell LPD predominates in OTR.
Resumo:
Valganciclovir (VGC) has proved efficacious and safe for the prophylaxis against cytomegalovirus (CMV) in high-risk transplant recipients and for the treatment of CMV retinitis in AIDS patients. We used VGC for the treatment of CMV infection (viremia without symptoms) or disease (CMV syndrome or tissue-invasive disease) in kidney, heart, and lung transplant recipients. Fourteen transplant recipients were treated: five for asymptomatic CMV infection and nine for CMV disease. VGC was administered in doses adjusted to renal function for 4 to 12 weeks (induction and maintenance therapy). Clinically, all nine patients with CMV disease responded to treatment. Microbiologically, treatment with VGC turned blood culture negative for CMV within 2 weeks in all patients and was associated with a > or =2 log decrease in blood CMV DNA within 3 weeks in 8 of 8 tested patients. With a follow-up of 6 months (n = 12 patients), asymptomatic recurrent CMV viremia was noted in five cases, and CMV syndrome noted in one case (all cases in the first 2 months after the end of treatment). VGC was clinically well tolerated in all patients; however, laboratory abnormalities occurred in three cases (mild increase in transaminases, thrombocytopenia, and pancytopenia). This preliminary experience strongly suggests that therapy with VGC is effective against CMV in organ transplant recipients; however, the exact duration of therapy remains to be determined: a longer course may be necessary to prevent early recurrence.
Resumo:
In alkaline lavas, the chemical zoning of megacrystals of spinel is due to the cationic exchange between the latter and the host lava. The application of Fick's law to cationic diffusion profiles allows to calculate the time these crystals have stayed in the lava. Those which are in a chemical equilibrium were in contact with the lava during 20 to 30 days, whereas megacrystals lacking this equilibrium were in contact only for 3 or 4 days. The duration of the rise of an ultrabasic nodule in the volcanic chimney was calculated by applying Stokes' law.
Resumo:
Solid pseudopapillary tumor of the pancreas (SPPP) is a very rare pancreatic tumor with low malignancy potential, occurring mostly in adolescent females and often not considered in the differential diagnosis of pancreas tumors in children. Patients with SPPP usually present with non specific abdominal symptoms and normal clinical laboratory tests. Between 2005 and 2007, 3 cases of SPPP were evaluated in our institution. The purpose of this communication is to describe the typical imaging findings of the SPPP tumor at US, CT and MRI and to correlate the images with the macro- and microscopic features of the lesion.
Resumo:
We investigated the association of trabecular bone score (TBS) with microarchitecture and mechanical behavior of human lumbar vertebrae. We found that TBS reflects vertebral trabecular microarchitecture and is an independent predictor of vertebral mechanics. However, the addition of TBS to areal BMD (aBMD) did not significantly improve prediction of vertebral strength. INTRODUCTION: The trabecular bone score (TBS) is a gray-level measure of texture using a modified experimental variogram which can be extracted from dual-energy X-ray absorptiometry (DXA) images. The current study aimed to confirm whether TBS is associated with trabecular microarchitecture and mechanics of human lumbar vertebrae, and if its combination with BMD improves prediction of fracture risk. METHODS: Lumbar vertebrae (L3) were harvested fresh from 16 donors. The anteroposterior and lateral bone mineral content (BMC) and areal BMD (aBMD) of the vertebral body were measured using DXA; then, the TBS was extracted using TBS iNsight software (Medimaps SA, France). The trabecular bone volume (Tb.BV/tissue volume, TV), trabecular thickness (Tb.Th), degree of anisotropy, and structure model index (SMI) were measured using microcomputed tomography. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies to assess failure load and stiffness. RESULTS: The TBS was significantly correlated to Tb.BV/TV and SMI (râeuro0/00=âeuro0/000.58 and -0.62; pâeuro0/00=âeuro0/000.02, 0.01), but not related to BMC and BMD. TBS was significantly correlated with stiffness (râeuro0/00=âeuro0/000.64; pâeuro0/00=âeuro0/000.007), independently of bone mass. Using stepwise multiple regression models, we failed to demonstrate that the combination of BMD and TBS was better at explaining mechanical behavior than either variable alone. However, the combination TBS, Tb.Th, and BMC did perform better than each parameter alone, explaining 79Â % of the variability in stiffness. CONCLUSIONS: In our study, TBS was associated with microarchitecture parameters and with vertebral mechanical behavior, but TBS did not improve prediction of vertebral biomechanical properties in addition to aBMD.
Resumo:
Numerous preclinical and clinical studies have shown that interleukin-2 (IL-2) induces regression of metastatic tumors. We have conducted a phase I/II, multicenter, open-label, dose-escalating study to evaluate the safety, efficacy, and biological effects of repeated intratumoral injections of adenovirus-IL-2 (TG1024) in patients with advanced solid tumors and melanoma. Thirty five patients (twenty-five with metastatic melanoma and ten with other solid tumors) were treated in eight successive cohorts at dose levels ranging from 3 x 10(8) to 3 x 10(11) viral particles (vp). Intratumoral TG1024 injections in combination with dacarbazine (DTIC) were tested in metastatic melanoma in one cohort. No clinical responses were observed at doses below 3 x 10(11) vp. Six local objective responses were recorded in patients receiving 3 x 10(11) vp per treatment [five in metastatic melanoma and one in metastatic squamous cell carcinoma (SCC) of the skin], of which two were complete responses (CRs). Most of the common side effects were injection site reactions and flu-like syndrome. TG1024 dose intensification across cohorts resulted in increased serum IL-2 levels after the injection. Intratumoral TG1024 injection induced pronounced inflammation of the treated lesion, with predominant CD8(+), TIA+ lymphocytic infiltrate. Our results show that intratumoral injections of TG1024 are safe and well tolerated. The clinical activity of TG1024 observed in this study warrants further investigations.
Resumo:
There is increasing evidence to suggest that the presence of mesoscopic heterogeneities constitutes the predominant attenuation mechanism at seismic frequencies. As a consequence, centimeter-scale perturbations of the subsurface physical properties should be taken into account for seismic modeling whenever detailed and accurate responses of the target structures are desired. This is, however, computationally prohibitive since extremely small grid spacings would be necessary. A convenient way to circumvent this problem is to use an upscaling procedure to replace the heterogeneous porous media by equivalent visco-elastic solids. In this work, we solve Biot's equations of motion to perform numerical simulations of seismic wave propagation through porous media containing mesoscopic heterogeneities. We then use an upscaling procedure to replace the heterogeneous poro-elastic regions by homogeneous equivalent visco-elastic solids and repeat the simulations using visco-elastic equations of motion. We find that, despite the equivalent attenuation behavior of the heterogeneous poro-elastic medium and the equivalent visco-elastic solid, the seismograms may differ due to diverging boundary conditions at fluid-solid interfaces, where there exist additional options for the poro-elastic case. In particular, we observe that the seismograms agree for closed-pore boundary conditions, but differ significantly for open-pore boundary conditions. This is an interesting result, which has potentially important implications for wave-equation-based algorithms in exploration geophysics involving fluid-solid interfaces, such as, for example, wave field decomposition.
Resumo:
Although important progresses have been achieved in the therapeutic management of transplant recipients, acute and chronic rejections remain the leading causes of premature graft loss after solid organ transplantation. This, together with the undesirable side effects of immunosuppressive drugs, has significant implications for the long-term outcome of transplant recipients. Thus, a better understanding of the immunological events occurring after transplantation is essential. The immune system plays an ambivalent role in the outcome of a graft. On one hand, some T lymphocytes with effector functions (called alloreactive) can mediate a cascade of events eventually resulting in the rejection, either acute or chronic, of the grafted organ ; on the other hand, a small subset of T lymphocytes, called regulatory T cells, has been shown to be implicated in the control of these harmful rejection responses, among other things. Thus, we focused our interest on the study of the balance between circulating effectors (alloreactive) and regulatory T lymphocytes, which seems to play an important role in the outcome of allografts, in the context of kidney transplantation. The results were correlated with various variables such as the clinical status of the patients, the immunosuppressive drugs used as induction or maintenance agents, and past or current episodes of rejection. We observed that the percentage of the alloreactive T lymphocyte population was correlated with the clinical status of the kidney transplant recipients. Indeed, the highest percentage was found in patients suffering from chronic humoral rejection, whilst patients on no or only minimal immunosuppressive treatment or on sirolimus-based immunosuppression displayed a percentage comparable to healthy non-transplanted individuals. During the first year after renal transplantation, the balance between effectors and regulatory T lymphocytes was tipped towards the detrimental effector immune response, with the two induction agents studied (thymoglobulin and basiliximab). Overall, these results indicate that monitoring these immunological parameters may be very useful for the clinical follow-up of transplant recipients ; these tests may contribute to identify patients who are more likely to develop rejection or, on the contrary, who tolerate well their graft, in order to adapt the immunosuppressive treatment on an individual basis.