205 resultados para Regulatory optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : Les vertébrés ont recours au système immunitaire inné et adaptatif pour combattre les pathogènes. La découverte des récepteurs Toll, il y a dix ans, a fortement augmenté l'intérêt porté à l'immunité innée. Depuis lors, des récepteurs intracellulaires tels que les membres de la famille RIG-like helicase (RLHs) et NOD-like receptor (NLRs) ont été décrits pour leur rôle dans la détection des pathogènes. L'interleukine-1 beta (IL-1β) est une cytokine pro-inflammatoire qui est synthétisée sous forme de précurseur, la proIL-1β. La proIL-1β requiert d'être clivée par la caspase-1 pour devenir active. La caspase-1 est elle-même activée par un complexe appelé inflammasome qui peut être formé par divers membres de la famille NLR. Plusieurs inflammasomes ont été décrits tels que le NALP3 inflammasome ou l'IPAF inflammasome. Dans cette étude nous avons identifié la co-chaperone SGT1 et la chaperone HSP90 comme partenaires d'interaction de NALP3. Ces deux protéines sont bien connues chez les plantes pour leurs rôles dans la régulation des gènes de résistance (gène R) qui sont structurellement apparentés à la famille NLR. Nous avons pu montrer que SGT1 et HSP90 jouent un rôle similaire dans la régulation de NALP3 et des protéines R. En effet, nous avons démontré que les deux protéines sont nécessaires pour l'activité du NALP3 inflammasome. De plus, la HSP90 est également requise pour la stabilité de NALP3. En se basant sur ces observations, nous avons proposé un modèle dans lequel SGT1 et HSP90 maintiennent NALP3 inactif mais prêt à percevoir un ligand activateur qui initierait la cascade inflammatoire. Nous avons également montré une interaction entre SGT1 et HSP90 avec plusieurs NLRs. Cette observation suggère qu'un mécanisme similaire pourrait être impliqué dans la régulation des membres de la famille des NLRs. Ces dernières années, plusieurs PAMPs mais également des DAMPs ont été identifiés comme activateurs du NALP3 inflammasome. Dans la seconde partie de cette étude, nous avons identifié la réponse au stress du réticulum endoplasmique (RE) comme nouvel activateur du NALP3 inflammasome. Cette réponse est initiée lors de l'accumulation dans le réticulum endoplasmique de protéines ayant une mauvaise conformation ce qui conduit, en autre, à l'arrêt de la synthèse de nouvelles protéines ainsi qu'une augmentation de la dégradation des protéines. Les mécanismes par lesquels la réponse du réticulum endoplasmique induit l'activation du NALP3 inflammasome doivent encore être déterminés. Summary : Vertebrates rely on the adaptive and the innate immune systems to fight pathogens. Awarness of the importance of the innate system increased with the identification of Toll-like receptors a decade ago. Since then, intracellular receptors such as the RIG-like helicase (RLH) and the NOD-like receptor (NLR) families have been described for their role in the recognition of microbes. Interleukin- 1ß (IL-1ß) is a key mediator of inflammation. This proinflammatory cytokine is synthesised as an inactive precursor that requires processing by caspase-1 to become active. Caspase-1 is, itself, activated in a complex termed the inflammasome that can be formed by members of the NLR family. Various inflammasome complexes have been described such as the IPAF and the NALP3 inflammasome. In this study, we have identified the co-chaperone SGT1 and the chaperone HSP90 as interacting partners of NALP3. SGT1 and HSP90 are both known for their role in the activity of plant resistance proteins (R proteins) which are structurally related to the NLR family. We have shown that HSP90 and SGT1 play a similar role in the regulation of NALP3 and in the regulation of plant R proteins. Indeed, we demonstrated that both HSP90 and SGT1 are essential for the activity of the NALP3 inflammasome complex. In addition, HSP90 is required for the stability of NALP3. Based on these observations, we have proposed a model in which SGT1 and HSP90 maintain NALP3 in an inactive but signaling-competent state, ready to receive an activating ligand that induces the inflammatory cascade. An interaction between several NLR members, SGTI and HSP90 was also shown, suggesting that similar mechanisms could be involved in the regulation of other NLRs. Several pathogen-associated molecular patterns (PAMPs) but also danger associated molecular patterns (DAMPs) have been identified as NALP3 activators. In the second part of this study, we have identified the ER stress response as a new NALP3 activator. The ER stress response is activated upon the accumulation of unfolded protein in the endoplasmic reticulum and results in a block in protein synthesis and increased protein degradation. The mechanisms of ER stress-mediated NALP3 activation remain to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engagement of the T cell receptor leads to the accumulation of filamentous actin, which is necessary for the formation of the immunological synapse and subsequent T cell activation. In the December issue of Molecular Cell, Sasahara et al. provide new insights into the link between the T cell receptor and actin assembly in the immunological synapse, and reveal a critical regulatory role for PKC theta in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha chain of the interleukin-2 receptor (IL-2R alpha) is a key regulator of lymphocyte proliferation. To analyze the mechanisms controlling its expression in normal cells, we used the 5'-flanking region (base pairs -2539/+93) of the mouse gene to drive chloramphenicol acetyltransferase expression in four transgenic mouse lines. Constitutive transgene activity was restricted to lymphoid organs. In mature T lymphocytes, transgene and endogenous IL-2R alpha gene expression was stimulated by concanavalin A and up-regulated by IL-2 with very similar kinetics. In thymic T cell precursors, IL-1 and IL-2 cooperatively induced transgene and IL-2R alpha gene expression. These results show that regulation of the endogenous IL-2R alpha gene occurs mainly at the transcriptional level. They demonstrate that cis-acting elements in the 5'-flanking region present in the transgene confer correct tissue specificity and inducible expression in mature T cells and their precursors in response to antigen, IL-1, and IL-2. In a complementary approach, we screened the 5' end of the endogenous IL-2R alpha gene for DNase-I hypersensitive sites. We found three lymphocyte specific DNase-I hypersensitive sites. Two, at -0.05 and -5.3 kilobase pairs, are present in resting T cells. A third site appears at -1.35 kilobase pairs in activated T cells. It co-localizes with IL-2-responsive elements identified by transient transfection experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: To determine optimum spatial resolution when imaging peripheral arteries with magnetic resonance angiography (MRA). MATERIALS AND METHODS: Eight vessel diameters ranging from 1.0 to 8.0 mm were simulated in a vascular phantom. A total of 40 three-dimensional flash MRA sequences were acquired with incremental variations of fields of view, matrix size, and slice thickness. The accurately known eight diameters were combined pairwise to generate 22 "exact" degrees of stenosis ranging from 42% to 87%. Then, the diameters were measured in the MRA images by three independent observers and with quantitative angiography (QA) software and used to compute the degrees of stenosis corresponding to the 22 "exact" ones. The accuracy and reproducibility of vessel diameter measurements and stenosis calculations were assessed for vessel size ranging from 6 to 8 mm (iliac artery), 4 to 5 mm (femoro-popliteal arteries), and 1 to 3 mm (infrapopliteal arteries). Maximum pixel dimension and slice thickness to obtain a mean error in stenosis evaluation of less than 10% were determined by linear regression analysis. RESULTS: Mean errors on stenosis quantification were 8.8% +/- 6.3% for 6- to 8-mm vessels, 15.5% +/- 8.2% for 4- to 5-mm vessels, and 18.9% +/- 7.5% for 1- to 3-mm vessels. Mean errors on stenosis calculation were 12.3% +/- 8.2% for observers and 11.4% +/- 15.1% for QA software (P = .0342). To evaluate stenosis with a mean error of less than 10%, maximum pixel surface, the pixel size in the phase direction, and the slice thickness should be less than 1.56 mm2, 1.34 mm, 1.70 mm, respectively (voxel size 2.65 mm3) for 6- to 8-mm vessels; 1.31 mm2, 1.10 mm, 1.34 mm (voxel size 1.76 mm3), for 4- to 5-mm vessels; and 1.17 mm2, 0.90 mm, 0.9 mm (voxel size 1.05 mm3) for 1- to 3-mm vessels. CONCLUSION: Higher spatial resolution than currently used should be selected for imaging peripheral vessels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Independent regulatory agencies (IRAs) were created in various sectors and on different governmental levels to implement liberalization policies. This paper investigates the link between IRAs' independence, which is said to promote regulatory credibility and the use of technical expertise, and their accountability, which is related to the need for controlling and legitimizing independent regulators. The literature on the regulatory state anticipates a positive relation between the independence and accountability of IRAs, but systematic empirical evidence is still lacking. To tackle this question, this paper measures and compares the independence and the accountability of IRAs in three differentially liberalized sectors in Switzerland (telecommunications, electricity and railways). With the application of Social Network Analysis, this piece of research shows that IRAs can be de facto independent and accountable at the same time, but the two features do not necessarily co-evolve in the same direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of T regulatory cells (Treg) in the induction and maintenance of allograft tolerance is being studied to a great extent. In contrast, little is known on their potential to prevent graft rejection in the field of xenotransplantation, where acute vascular rejection mediated by cellular and humoral mechanisms and thrombotic microangiopathy still prevents long-term graft survival. In this regard, the induction of donor-specific tolerance through isolation and expansion of xenoantigen-specific recipient Treg is currently becoming a focus of interest. This review will summarize the present knowledge concerning Treg and their potential use in xenotransplantation describing in particular CD4(+)CD25(+)Foxp3(+) T cells, CD8(+)CD28(-) Treg, double negative CD4(-)CD8(-) T cells, and natural killer Treg. Although only studied in vitro so far, human CD4(+)CD25(+)Foxp3(+) Treg is currently the best characterized subpopulation of regulatory cells in xenotransplantation. CD8(+)CD28(-) Treg and double negative CD4(-)CD8(-) Treg also seem to be implicated in tolerance maintenance of xenografts. Finally, one study revealing a role for natural killer CD4(+)Valpha14(+) Treg in the prolongation of xenograft survival needs further confirmation. To our opinion, CD4(+)CD25(+)Foxp3(+) Treg are a promising candidate to protect xenografts. In contrast to cadaveric allotransplantation, the donor is known prior to xenotransplantation. This advantage allows the expansion of recipient Treg in a xenoantigen specific manner before transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tractography is a class of algorithms aiming at in vivo mapping the major neuronal pathways in the white matter from diffusion magnetic resonance imaging (MRI) data. These techniques offer a powerful tool to noninvasively investigate at the macroscopic scale the architecture of the neuronal connections of the brain. However, unfortunately, the reconstructions recovered with existing tractography algorithms are not really quantitative even though diffusion MRI is a quantitative modality by nature. As a matter of fact, several techniques have been proposed in recent years to estimate, at the voxel level, intrinsic microstructural features of the tissue, such as axonal density and diameter, by using multicompartment models. In this paper, we present a novel framework to reestablish the link between tractography and tissue microstructure. Starting from an input set of candidate fiber-tracts, which are estimated from the data using standard fiber-tracking techniques, we model the diffusion MRI signal in each voxel of the image as a linear combination of the restricted and hindered contributions generated in every location of the brain by these candidate tracts. Then, we seek for the global weight of each of them, i.e., the effective contribution or volume, such that they globally fit the measured signal at best. We demonstrate that these weights can be easily recovered by solving a global convex optimization problem and using efficient algorithms. The effectiveness of our approach has been evaluated both on a realistic phantom with known ground-truth and in vivo brain data. Results clearly demonstrate the benefits of the proposed formulation, opening new perspectives for a more quantitative and biologically plausible assessment of the structural connectivity of the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undernutrition is a widespread problem in intensive care unit and is associated with a worse clinical outcome. A state of negative energy balance increases stress catabolism and is associated with increased morbidity and mortality in ICU patients. Undernutrition-related increased morbidity is correlated with an increase in the length of hospital stay and health care costs. Enteral nutrition is the recommended feeding route in critically ill patients, but it is often insufficient to cover the nutritional needs. The initiation of supplemental parenteral nutrition, when enteral nutrition is insufficient, could optimize the nutritional therapy by preventing the onset of early energy deficiency, and thus, could allow to reduce morbidity, length of stay and costs, shorten recovery period and, finally, improve quality of life. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European regulatory networks (ERNs) constitute the main governance instrument for the informal co-ordination of public regulation at the European Union (EU) level. They are in charge of co-ordinating national regulators and ensuring the implementation of harmonized regulatory policies across the EU, while also offering sector-specific expertise to the Commission. To this aim, ERNs develop 'best practices' and benchmarking procedures in the form of standards, norms and guidelines to be adopted in member states. In this paper, we focus on the Committee of European Securities Regulators and examine the consequences of the policy-making structure of ERNs on the domestic adoption of standards. We find that the regulators of countries with larger financial industries tend to occupy more central positions in the network, especially among newer member states. In turn, network centrality is associated with a more prompt domestic adoption of standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many experimental models, CD4+CD25+Foxp3+ regulatory T cells (nTreg) have been identifi ed as key players in promoting peripheral transplantation (Tx) tolerance. We have been focusing on therapies based on antigen-specifi c nTreg that can control effector T cells (Teff) and prevent allograft rejection. The use of nTreg in immunotherapeutic protocols for solid organ Tx is however limited by their overall low numbers as well as the low precursor frequency of alloantigen cross-reactive nTreg expected to be found in a normal individual. Moreover, although we previously described robust protocols to generate and expand antigen-specifi c nTreg in vitro, the process requires careful selection of highly pure nTreg and cumbersome ex-vivo manipulations, rendering this strategy not easily applicable in clinical solid organ Tx. In this study, we aimed to expand Treg directly in vivo and determine their suppressive function, effi cacy and stability in promoting donor-specifi c tolerance in a stringent murine Tx model. Our data suggest that IL-2-based therapies lead to a signifi cant increase of Treg in vivo. The expanded Treg suppressed Teff proliferation (albeit slightly less effi ciently than nTreg isolated from control mice) and allowed prolonged graft survival of major MHC-mismatched skin grafts in wild-type non-lymphopenic recipients. The expanded Treg alone were however not suffi cient to induce tolerance in stringent experimental conditions. Rapamycin reduced the frequency of Teff but did not impede expansion of Treg. Pro-infl ammatory stimuli hindered the expansion of Treg and resulted in an increase in the frequency of CD4+IFN-γ+ and CD4+IL17+ T cells. We propose that IL-2-based treatments would be an effi cient method for expanding functional Treg in vivo without affecting other immune cell populations, thereby favorably shifting the pool of alloreactive T cells towards regulation in response to an allograft. However, we also highlight some potential limitations of Treg expansion such as concomitant infl ammatory events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : The Wiskott-Aldrich Syndrome (WAS) is an X-linked recessive human primary immunodeficiency. It is caused by mutations in the gene encoding the hermatopoietic specific regulator of the actin cytoskeleton Wiskott-Aldrich Syndrome Protein (WASP). Importantly, a majority of affected patients develop autoimmunity including an inflammatory bowel disease (IBD)-like disease. WASP deficient mice share many similarities with the human WAS. One of these similarities is the spontaneous development of colitis. I have focused my dissertation studies on the pathogenesis of colitis in WASP deficient mice. Prior work from our laboratory had shown that lymphocytes were required and that CD4+ T cells sufficient for colitis development. This colitis was associated with a predominant Th2-cytokine skewing. I have contributed in exploring whether the Th2 cytokine IL-4 plays a role in disease maintenance. Using two approaches to neutralize IL-4, we found that this cytokine plays a role in disease maintenance. Natural CD4*CD25*Foxp3* regulatory T cells (nTreg cells) have been implicated in the pathogenesis of several autoimmune disorders. We found that WASP deficient mice have reduced nTreg cell numbers in peripheral lymphoid organs. This was associated with functional defects in suppressing T cell proliferation and preventing colitis induced by transfer of naïve T cells into SCID recipient, which lack lymphocytes. WASP deficiency affected homing of nTreg cells to lymphoid compartments, IL-2-mediated activation and secretion of the immunomodulatory cytokine IL-10. Finally, we could prevent colitis onset via adoptive transfer of WT nTreg cells prior to colitis development. This suggests that nTreg cells dysfunction is one of the mechanisms underlying colitis development in WASP deficient mice. Future directions will aim at deciphering the role of other immune cell types, the bacterial flora, and various cytokines in colitis development in this murine model of colitis. In addition, we believe that colitis in WASP deficient mice could serve as a useful tool to evaluate nTreg cells manipulation as novel therapeutic approach for IBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Activation of innate pattern-recognition receptors promotes CD4+ T-cell-mediated autoimmune myocarditis and subsequent inflammatory cardiomyopathy. Mechanisms that counterregulate exaggerated heart-specific autoimmunity are poorly understood. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice by immunization with α-myosin heavy chain peptide and complete Freund's adjuvant. Together with interferon-γ, heat-killed Mycobacterium tuberculosis, an essential component of complete Freund's adjuvant, converted CD11b(hi)CD11c(-) monocytes into tumor necrosis factor-α- and nitric oxide synthase 2-producing dendritic cells (TipDCs). Heat-killed M. tuberculosis stimulated production of nitric oxide synthase 2 via Toll-like receptor 2-mediated nuclear factor-κB activation. TipDCs limited antigen-specific T-cell expansion through nitric oxide synthase 2-dependent nitric oxide production. Moreover, they promoted nitric oxide synthase 2 production in hematopoietic and stromal cells in a paracrine manner. Consequently, nitric oxide synthase 2 production by both radiosensitive hematopoietic and radioresistant stromal cells prevented exacerbation of autoimmune myocarditis in vivo. CONCLUSIONS: Innate Toll-like receptor 2 stimulation promotes formation of regulatory TipDCs, which confine autoreactive T-cell responses in experimental autoimmune myocarditis via nitric oxide. Therefore, activation of innate pattern-recognition receptors is critical not only for disease induction but also for counterregulatory mechanisms, protecting the heart from exaggerated autoimmunity.