57 resultados para Quantum Games


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of quantum dots (QDs) in the area of fingermark detection is currently receiving a lot of attention in the forensic literature. Most of the research efforts have been devoted to cadmium telluride (CdTe) quantum dots often applied as powders to the surfaces of interests. Both the use of cadmium and the nano size of these particles raise important issues in terms of health and safety. This paper proposes to replace CdTe QDs by zinc sulphide QDs doped with copper (ZnS:Cu) to address these issues. Zinc sulphide-copper doped QDs were successfully synthesized, characterized in terms of size and optical properties and optimized to be applied for the detection of impressions left in blood, where CdTe QDs proved to be efficient. Effectiveness of detection was assessed in comparison with CdTe QDs and Acid Yellow 7 (AY7, an effective blood reagent), using two series of depletive blood fingermarks from four donors prepared on four non-porous substrates, i.e. glass, transparent polypropylene, black polyethylene and aluminium foil. The marks were cut in half and processed separately with both reagents, leading to two comparison series (ZnS:Cu vs. CdTe, and ZnS:Cu vs. AY7). ZnS:Cu proved to be better than AY7 and at least as efficient as CdTe on most substrates. Consequently, copper-doped ZnS QDs constitute a valid substitute for cadmium-based QDs to detect blood marks on non-porous substrates and offer a safer alternative for routine use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a lack of quick, simple and reliable methods for determination of nanoparticle size. An investigation of the size of hydrophobic (CdSe) and hydrophilic (CdSe/ZnS) quantum dots was performed by using the maximum position of the corresponding fluorescence spectrum. It has been found that fluorescence spectroscopy is a simple and reliable methodology to estimate the size of both quantum dot types. For a given solution, the homogeneity of the size of quantum dots is correlated to the relationship between the fluorescence maximum position (FMP) and the quantum dot size. This methodology can be extended to the other fluorescent nanoparticles. The employment of evolving factor analysis and multivariate curve resolution-alternating least squares for decomposition of the series of quantum dots fluorescence spectra recorded by a specific measuring procedure reveals the number of quantum dot fractions having different diameters. The size of the quantum dots in a particular group is defined by the FMP of the corresponding component in the decomposed spectrum. These results show that a combination of the fluorescence and appropriate statistical method for decomposition of the emission spectra of nanoparticles may be a quick and trusted method for the screening of the inhomogeneity of their solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooperation and coordination are desirable behaviors that are fundamental for the harmonious development of society. People need to rely on cooperation with other individuals in many aspects of everyday life, such as teamwork and economic exchange in anonymous markets. However, cooperation may easily fall prey to exploitation by selfish individuals who only care about short- term gain. For cooperation to evolve, specific conditions and mechanisms are required, such as kinship, direct and indirect reciprocity through repeated interactions, or external interventions such as punishment. In this dissertation we investigate the effect of the network structure of the population on the evolution of cooperation and coordination. We consider several kinds of static and dynamical network topologies, such as Baraba´si-Albert, social network models and spatial networks. We perform numerical simulations and laboratory experiments using the Prisoner's Dilemma and co- ordination games in order to contrast human behavior with theoretical results. We show by numerical simulations that even a moderate amount of random noise on the Baraba´si-Albert scale-free network links causes a significant loss of cooperation, to the point that cooperation almost vanishes altogether in the Prisoner's Dilemma when the noise rate is high enough. Moreover, when we consider fixed social-like networks we find that current models of social networks may allow cooperation to emerge and to be robust at least as much as in scale-free networks. In the framework of spatial networks, we investigate whether cooperation can evolve and be stable when agents move randomly or performing Le´vy flights in a continuous space. We also consider discrete space adopting purposeful mobility and binary birth-death process to dis- cover emergent cooperative patterns. The fundamental result is that cooperation may be enhanced when this migration is opportunistic or even when agents follow very simple heuristics. In the experimental laboratory, we investigate the issue of social coordination between indi- viduals located on networks of contacts. In contrast to simulations, we find that human players dynamics do not converge to the efficient outcome more often in a social-like network than in a random network. In another experiment, we study the behavior of people who play a pure co- ordination game in a spatial environment in which they can move around and when changing convention is costly. We find that each convention forms homogeneous clusters and is adopted by approximately half of the individuals. When we provide them with global information, i.e., the number of subjects currently adopting one of the conventions, global consensus is reached in most, but not all, cases. Our results allow us to extract the heuristics used by the participants and to build a numerical simulation model that agrees very well with the experiments. Our findings have important implications for policymakers intending to promote specific, desired behaviors in a mobile population. Furthermore, we carry out an experiment with human subjects playing the Prisoner's Dilemma game in a diluted grid where people are able to move around. In contrast to previous results on purposeful rewiring in relational networks, we find no noticeable effect of mobility in space on the level of cooperation. Clusters of cooperators form momentarily but in a few rounds they dissolve as cooperators at the boundaries stop tolerating being cheated upon. Our results highlight the difficulties that mobile agents have to establish a cooperative environment in a spatial setting without a device such as reputation or the possibility of retaliation. i.e. punishment. Finally, we test experimentally the evolution of cooperation in social networks taking into ac- count a setting where we allow people to make or break links at their will. In this work we give particular attention to whether information on an individual's actions is freely available to poten- tial partners or not. Studying the role of information is relevant as information on other people's actions is often not available for free: a recruiting firm may need to call a job candidate's refer- ences, a bank may need to find out about the credit history of a new client, etc. We find that people cooperate almost fully when information on their actions is freely available to their potential part- ners. Cooperation is less likely, however, if people have to pay about half of what they gain from cooperating with a cooperator. Cooperation declines even further if people have to pay a cost that is almost equivalent to the gain from cooperating with a cooperator. Thus, costly information on potential neighbors' actions can undermine the incentive to cooperate in dynamical networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the challenges of treating polarization and covalent interactions in docking by developing a hybrid quantum mechanical/molecular mechanical (QM/MM) scoring function based on the semiempirical self-consistent charge density functional tight-binding (SCC-DFTB) method and the CHARMM force field. To benchmark this scoring function within the EADock DSS docking algorithm, we created a publicly available dataset of high-quality X-ray structures of zinc metalloproteins ( http://www.molecular-modelling.ch/resources.php ). For zinc-bound ligands (226 complexes), the QM/MM scoring yielded a substantially improved success rate compared to the classical scoring function (77.0% vs 61.5%), while, for allosteric ligands (55 complexes), the success rate remained constant (49.1%). The QM/MM scoring significantly improved the detection of correct zinc-binding geometries and improved the docking success rate by more than 20% for several important drug targets. The performance of both the classical and the QM/MM scoring functions compare favorably to the performance of AutoDock4, AutoDock4Zn, and AutoDock Vina.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the health domain, the field of rehabilitation suffers from a lack specialized staff while hospital costs only increase. Worse, almost no tools are dedicated to motivate patients or help the personnel to carry out monitoring of therapeutic exercises. This paper demonstrates the high potential that can bring the virtual reality with a platform of serious games for the rehabilitation of the legs involving a head-mounted display and haptic robot devices. We first introduce SG principles and the current context regarding rehabilitation interventions followed by the description of an original haptic device called Lambda Health System. The architecture of the model is then detailed, including communication specifications showing that lag is imperceptible for user (60Hz). Finally, four serious games for rehabilitation using haptic robots and/or HMD were tested by 33 health specialists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NlmCategory="UNASSIGNED">A version of cascaded systems analysis was developed specifically with the aim of studying quantum noise propagation in x-ray detectors. Signal and quantum noise propagation was then modelled in four types of x-ray detectors used for digital mammography: four flat panel systems, one computed radiography and one slot-scan silicon wafer based photon counting device. As required inputs to the model, the two dimensional (2D) modulation transfer function (MTF), noise power spectra (NPS) and detective quantum efficiency (DQE) were measured for six mammography systems that utilized these different detectors. A new method to reconstruct anisotropic 2D presampling MTF matrices from 1D radial MTFs measured along different angular directions across the detector is described; an image of a sharp, circular disc was used for this purpose. The effective pixel fill factor for the FP systems was determined from the axial 1D presampling MTFs measured with a square sharp edge along the two orthogonal directions of the pixel lattice. Expectation MTFs were then calculated by averaging the radial MTFs over all possible phases and the 2D EMTF formed with the same reconstruction technique used for the 2D presampling MTF. The quantum NPS was then established by noise decomposition from homogenous images acquired as a function of detector air kerma. This was further decomposed into the correlated and uncorrelated quantum components by fitting the radially averaged quantum NPS with the radially averaged EMTF(2). This whole procedure allowed a detailed analysis of the influence of aliasing, signal and noise decorrelation, x-ray capture efficiency and global secondary gain on NPS and detector DQE. The influence of noise statistics, pixel fill factor and additional electronic and fixed pattern noises on the DQE was also studied. The 2D cascaded model and decompositions performed on the acquired images also enlightened the observed quantum NPS and DQE anisotropy.