52 resultados para Mineral oils.
Resumo:
Except for the first 2 years since July 29, 1968, Arenal volcano has continuously erupted compositionally monotonous and phenocryst-rich (similar to35%) basaltic andesites composed of plagioclase (plag), orthopyroxene (opx), clinopyroxene (cpx), spinel olivine. Detailed textural and compositional analyses of phenocrysts, mineral inclusions, and microlites reveal comparable complexities in any given sample and identify mineral components that require a minimum of four crystallization environments. We suggest three distinct crystallization environments crystallized low Mg# (<78) silicate phases from andesitic magma but at different physical conditions, such as variable pressure of crystallization and water conditions. The dominant environment, i.e., the one which accounts for the majority of minerals and overprinted all other assemblages near rims of phenocrysts, cocrystallized clinopyroxene (Mg# similar to71-78), orthopyroxene (Mg# similar to71-78), titanomagnetite and plagioclase (An(60) to An(85)). The second environment cocrystallized clinopyroxene (Mg# 71-78), olivine (<Fo(78)), titanomagnetite, and very high An (similar to90) plagioclase, while the third cocrystallized clinopyroxene (Mg# 71-78) with high (>7) Al/Ti and high (>4 wt.%) Al2O3, titanomagnetite with considerable Al2O3 (10-18 wt.%) and possibly olivine but appears to lack plagioclase. A fourth crystallization environment is characterized by clinopyroxene (e.g., Mg#=similar to78-85; Cr2O3=0.15-0.7 wt.%), Al-, Cr-rich spinel olivine (similar toFo(80)), and in some circumstances high-An (>80) plagioclase. This assemblage seems to record mafic inputs into the Arenal system and crystallization at high to low pressures. Single crystals cannot be completely classified as xenocrysts, antecrysts (cognate crystals), or phenocrysts, because they often contain different parts each representing a different crystallization environment and thus belong to different categories. Bulk compositions are mostly too mafic to have crystallized the bulk of ferromagnesian minerals and thus likely do not represent liquid compositions. On the other hand, they are the cumulative products of multiple mixing events assembling melts and minerals from a variety of sources. The driving force for this multistage mixing evolution to generate erupting basaltic andesites is thought to be the ascent of mafic magma from lower crustal levels to subvolcanic depths which at the same time may also go through compositional modification by fractionation and assimilation of country rocks. Thus, mafic magmas become basaltic andesite through mixing, fractionation and assimilation by the time they arrive at subvolcanic depths. We infer new increments of basaltic andesite are supplied nearly continuously to the subvolcanic reservoir concurrently to the current eruption and that these new increments are blended into the residing, subvolcanic magma. Thus, the compositional monotony is mostly the product of repetitious production of very similar basaltic andesite. Furthermore, we propose that this quasi-constant supply of small increments of magma is the fundamental cause for small-scale, decade-long continuous volcanic activity; that is, the current eruption of Arenal is flux-controlled by inputs of mantle magmas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
FRAX(®) is a fracture risk assessment algorithm developed by the World Health Organization in cooperation with other medical organizations and societies. Using easily available clinical information and femoral neck bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA), when available, FRAX(®) is used to predict the 10-year probability of hip fracture and major osteoporotic fracture. These values may be included in country specific guidelines to aid clinicians in determining when fracture risk is sufficiently high that the patient is likely to benefit from pharmacological therapy to reduce that risk. Since the introduction of FRAX(®) into clinical practice, many practical clinical questions have arisen regarding its use. To address such questions, the International Society for Clinical Densitometry (ISCD) and International Osteoporosis Foundations (IOF) assigned task forces to review the best available medical evidence and make recommendations for optimal use of FRAX(®) in clinical practice. Questions were identified and divided into three general categories. A task force was assigned to investigating the medical evidence in each category and developing clinically useful recommendations. The BMD Task Force addressed issues that included the potential use of skeletal sites other than the femoral neck, the use of technologies other than DXA, and the deletion or addition of clinical data for FRAX(®) input. The evidence and recommendations were presented to a panel of experts at the ISCD-IOF FRAX(®) Position Development Conference, resulting in the development of ISCD-IOF Official Positions addressing FRAX(®)-related issues.
Resumo:
A combined Ar-40/Ar-39, K/Ar, Rb/Sr and stable isotope study has been made of white micas from the Gummfluh klippe (Brianconnais domain of the Prealpes), Switzerland. The klippe consists mainly of Mesozoic to early Tertiary carbonate rocks metamorphosed from anchizonal to epizonal conditions. At the base of the klippe is a 10-50 m thick, ductilely deformed marble mylonite containing deformed authigenic quartz segregations. Stable isotope measurements of the coexisting calcite (deltaO-18SMOW=24.5) and quartz (deltaO-18SMOW=28.4) from the mylonite indicate relatively low temperatures (< 300-degreesC) during mylonitization. Analyses of white mica separates of varying size fractions from the mylonitic rocks by K/Ar and Rb/Sr techniques yield ages between 57 and 103 Ma. This variation is correlated with two parameters, the size of the mineral fraction, and the proportion of 2M1 (more phengitic) to 1M (more muscovitic) polytype in the sample. The K/Ar and Rb/Sr ages are generally younger in the smaller size fractions, which also containless 2M1 phengite. High precision Ar-40/Ar-39 age spectra from different size fractions of these micas record three distinct components, a small Hercynian component (ca. 200-300 Ma), a significant Eoalpine component (64-80 Ma) forming Ar-40/Ar-39 age plateaus, and a very minor Tertiary component (ca. 20-40 Ma). Characterization of the samples by SEM indicates the presence of two white mica populations, a coarser grained, deformed, detrital mica that probably corresponds to the 2M1 phengite and a finer grained neoformed 1M mica. Collectively these observations suggest that the Gummfluh samples contain a mixture of detrital phengites of Hercynian age together with neocrystallized muscovites grown during the late Eoalpine metamorphic event followed by minor argon loss during the Tertiary. The main geologic episode recorded in the Ar-40/Ar-39 age spectra of white micas in the mylonite is of Late Cretaceous/Early Tertiary age (64-80 Ma), representing the first reliable Eoalpine ages ever to be reported from the Prealpes. Contrary to tectonic models, the marble mylonite at the base of the Gummfluh klippe appears to be a Cretaceous thrust plane and not the thrust surface formed during transport of the klippe into its present position from the Penninic Alps during the Tertiary. The late Cretaceous thrust developed during marine sedimentation at a depth of 800 m below the seafloor at temperatures of approximately 280-degrees-C, facilitated by warm fluids along the tectonic discontinuity.
Resumo:
BACKGROUND: As an important modifiable lifestyle factor in osteoporosis prevention, physical activity has been shown to positively influence bone mass accrual during growth. We have previously shown that a nine month general school based physical activity intervention increased bone mineral content (BMC) and density (aBMD) in primary school children. From a public health perspective, a major key issue is whether these effects persist during adolescence. We therefore measured BMC and aBMD three years after cessation of the intervention to investigate whether the beneficial short-term effects persisted. METHODS: All children from 28 randomly selected first and fifth grade classes (intervention group (INT): 16 classes, n=297; control group (CON): 12 classes, n=205) who had participated in KISS (Kinder-und Jugendsportstudie) were contacted three years after cessation of the intervention program. The intervention included daily physical education with daily impact loading activities over nine months. Measurements included anthropometry, vigorous physical activity (VPA) by accelerometers, and BMC/aBMD for total body, femoral neck, total hip, and lumbar spine by dual-energy X-ray absorptiometry (DXA). Sex- and age-adjusted Z-scores of BMC or aBMD at follow-up were regressed on intervention (1 vs. 0), the respective Z-score at baseline, gender, follow-up height and weight, pubertal stage at follow-up, previous and current VPA, adjusting for clustering within schools. RESULTS: 377 of 502 (75%) children participated in baseline DXA measurements and of those, 214 (57%) participated to follow-up. At follow-up INT showed significantly higher Z-scores of BMC at total body (adjusted group difference: 0.157 units (0.031-0.283); p=0.015), femoral neck (0.205 (0.007-0.402); p=0.042) and at total hip (0.195 (0.036 to 0.353); p=0.016) and higher Z-scores of aBMD for total body (0.167 (0.016 to 0.317); p=0.030) compared to CON, representing 6-8% higher values for children in the INT. No differences could be found for the remaining bone parameters. For the subpopulation with baseline VPA (n=163), effect sizes became stronger after baseline VPA adjustment. After adjustment for baseline and current VPA (n=101), intervention effects were no longer significant, while effect sizes remained the same as without adjustment for VPA. CONCLUSION: Beneficial effects on BMC of a nine month general physical activity intervention appeared to persist over three years. Part of the maintained effects may be explained by current physical activity.
Resumo:
INTRODUCTION: The trabecular bone score (TBS) is a new parameter that is determined from grey level analysis of DXA images. It relies on the mean thickness and volume fraction of trabecular bone microarchitecture. This was a preliminary case-control study to evaluate the potential diagnostic value of TBS, both alone and combined with bone mineral density (BMDa), in the assessment of vertebral fracture. METHODS: Out of a subject pool of 441 Caucasian, postmenopausal women between the ages of 50 and 80 years, we identified 42 women with osteoporosis-related vertebral fractures, and compared them with 126 age-matched women without any fractures (1 case: 3 controls). Primary outcomes were BMDa and TBS. Inter-group comparisons were undertaken using Student's t-tests and Wilcoxon signed ranks tests for parametric and non-parametric data, respectively. Odds ratios for vertebral fracture were calculated for each incremental one standard deviation decrease in BMDa and TBS, and areas under the receiver operating curve (AUC) calculated and sensitivity analysis were conducted to compare BMDa alone, TBS alone, and the combination of BMDa and TBS. Subgroup analyses were performed specifically for women with osteopenia, and for women with T-score-defined osteoporosis. RESULTS: Across all subjects (n=42, 126) weight and body mass index were greater and BMDa and TBS both less in women with fractures. The odds of vertebral fracture were 3.20 (95% CI, 2.01-5.08) for each incremental decrease in TBS, 1.95 (1.34-2.84) for BMDa, and 3.62 (2.32-5.65) for BMDa + TBS combined. The AUC was greater for TBS than for BMDa (0.746 vs. 0.662, p=0.011). At iso-specificity (61.9%) or iso-sensitivity (61.9%) for both BMDa and TBS, TBS + BMDa sensitivity or specificity was 19.1% or 16.7% greater than for either BMDa or TBS alone. Among subjects with osteoporosis (n=11, 40) both BMDa (p=0.0008) and TBS (p=0.0001) were lower in subjects with fractures, and both OR and AUC (p=0.013) for BMDa + TBS were greater than for BMDa alone (OR=4.04 [2.35-6.92] vs. 2.43 [1.49-3.95]; AUC=0.835 [0.755-0.897] vs. 0.718 [0.627-0.797], p=0.013). Among subjects with osteopenia, TBS was lower in women with fractures (p=0.0296), but BMDa was not (p=0.75). Similarly, the OR for TBS was statistically greater than 1.00 (2.82, 1.27-6.26), but not for BMDa (1.12, 0.56-2.22), as was the AUC (p=0.035), but there was no statistical difference in specificity (p=0.357) or sensitivity (p=0.678). CONCLUSIONS: The trabecular bone score warrants further study as to whether it has any clinical application in osteoporosis detection and the evaluation of fracture risk.
Resumo:
Background: Bone health is a concern when treating early stage breast cancer patients with adjuvant aromatase inhibitors. Early detection of patients (pts) at risk of osteoporosis and fractures may be helpful for starting preventive therapies and selecting the most appropriate endocrine therapy schedule. We present statistical models describing the evolution of lumbar and hip bone mineral density (BMD) in pts treated with tamoxifen (T), letrozole (L) and sequences of T and L. Methods: Available dual-energy x-ray absorptiometry exams (DXA) of pts treated in trial BIG 1-98 were retrospectively collected from Swiss centers. Treatment arms: A) T for 5 years, B) L for 5 years, C) 2 years of T followed by 3 years of L and, D) 2 years of L followed by 3 years of T. Pts without DXA were used as a control for detecting selection biases. Patients randomized to arm A were subsequently allowed an unplanned switch from T to L. Allowing for variations between DXA machines and centres, two repeated measures models, using a covariance structure that allow for different times between DXA, were used to estimate changes in hip and lumbar BMD (g/cm2) from trial randomization. Prospectively defined covariates, considered as fixed effects in the multivariable models in an intention to treat analysis, at the time of trial randomization were: age, height, weight, hysterectomy, race, known osteoporosis, tobacco use, prior bone fracture, prior hormone replacement therapy (HRT), bisphosphonate use and previous neo-/adjuvant chemotherapy (ChT). Similarly, the T-scores for lumbar and hip BMD measurements were modeled using a per-protocol approach (allowing for treatment switch in arm A), specifically studying the effect of each therapy upon T-score percentage. Results: A total of 247 out of 546 pts had between 1 and 5 DXA; a total of 576 DXA were collected. Number of DXA measurements per arm were; arm A 133, B 137, C 141 and D 135. The median follow-up time was 5.8 years. Significant factors positively correlated with lumbar and hip BMD in the multivariate analysis were weight, previous HRT use, neo-/adjuvant ChT, hysterectomy and height. Significant negatively correlated factors in the models were osteoporosis, treatment arm (B/C/D vs. A), time since endocrine therapy start, age and smoking (current vs. never).Modeling the T-score percentage, differences from T to L were -4.199% (p = 0.036) and -4.907% (p = 0.025) for the hip and lumbar measurements respectively, before any treatment switch occurred. Conclusions: Our statistical models describe the lumbar and hip BMD evolution for pts treated with L and/or T. The results of both localisations confirm that, contrary to expectation, the sequential schedules do not seem less detrimental for the BMD than L monotherapy. The estimated difference in BMD T-score percent is at least 4% from T to L.
Resumo:
Rapeseed (Brassica napus) oils differing in cultivar, sites of growth, and harvest year were characterized by fatty acid concentrations and carbon, hydrogen, and oxygen stable isotope analyses of bulk oils (delta(13)C(bulk), delta(2)H(bulk), delta(18)O(bulk) values) and individual fatty acids (delta(13)C(FA)). The delta(13)C(bulk), delta(2)H(bulk), and delta(18)O(bulk) values were determined by continuous flow combustion and high-temperature conversion elemental analyzer isotope ratio mass spectrometry (EA/IRMS, TC-EA/IRMS). The delta(13)C(FA) values were determined using gas chromatography-combustion isotope ratio mass spectrometry (GC/C/IRMS). For comparison, other C(3) vegetable oils rich in linolenic acid (flax and false flax oils) and rich in linoleic acid (poppy, sunflower, and safflower oils) were submitted to the same chemical and isotopic analyses. The bulk and molecular delta(13)C values were typical for C(3) plants. The delta(13)C value of palmitic acid (delta(13)C(16:0)) and n-3 alpha-linolenic acid (delta(13)C(18:3n-3)) differed (p < 0.001) between rape, flax, and poppy oils. Also within species, significant differences of delta(13)C(FA) were observed (p < 0.01). The hydrogen and oxygen isotope compositions of rape oil differed between cultivars (p < 0.05). Major differences in the individual delta(13)C(FA) values were found. A plant-specific carbon isotope fractionation occurs during the biosynthesis of the fatty acids and particularly during desaturation of C(18) acids in rape and flax. Bulk oil and specific fatty acid stable isotope analysis might be useful in tracing dietary lipids differing in their origin.
Resumo:
BACKGROUND: The risk of osteoporosis and fracture influences the selection of adjuvant endocrine therapy. We analyzed bone mineral density (BMD) in Swiss patients of the Breast International Group (BIG) 1-98 trial [treatment arms: A, tamoxifen (T) for 5 years; B, letrozole (L) for 5 years; C, 2 years of T followed by 3 years of L; D, 2 years of L followed by 3 years of T]. PATIENTS AND METHODS: Dual-energy X-ray absorptiometry (DXA) results were retrospectively collected. Patients without DXA served as control group. Repeated measures models using covariance structures allowing for different times between DXA were used to estimate changes in BMD. Prospectively defined covariates were considered as fixed effects in the multivariable models. RESULTS: Two hundred and sixty-one of 546 patients had one or more DXA with 577 lumbar and 550 hip measurements. Weight, height, prior hormone replacement therapy, and hysterectomy were positively correlated with BMD; the correlation was negative for letrozole arms (B/C/D versus A), known osteoporosis, time on trial, age, chemotherapy, and smoking. Treatment did not influence the occurrence of osteoporosis (T score < -2.5 standard deviation). CONCLUSIONS: All aromatase inhibitor regimens reduced BMD. The sequential schedules were as detrimental for bone density as L monotherapy.
Resumo:
The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotope analysis of the bulk oil. The fatty acids from samples of olive, pumpkin, sunflower, maize, rape, soybean, and sesame oils were separated by alkaline hydrolysis and derivatized to methyl esters for chemical characterization by capillary gas chromatography/mass spectrometry (GC/MS) prior to isotopic analysis. Enrichment in heavy carbon isotope (C-13) of th, bulk oil and of the individual fatty acids are related to (1) a thermally induced degradation during processing (deodorization, steam washing, or bleaching), (2) hydrolytic rancidity (lipolysis) and oxidative rancidity of the vegetable oils during storage, and (3) the potential blend with refined oil or other vegetable oils. The impurity or admixture of different oils may be assessed from the delta C-13(16:0) VS. delta C-13(18:1) covariations. The fatty acid compositions of Slovenian and Croatian olive oils are compared with those from the most important Mediterranean producer countries (Spain, Italy, Greece, and France).
Resumo:
CONTEXT: In the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly - Pivotal Fracture Trial (HORIZON-PFT), zoledronic acid (ZOL) 5 mg significantly reduced fracture risk. OBJECTIVE: The aim of the study was to identify factors associated with greater efficacy during ZOL 5 mg treatment. DESIGN, SETTING, AND PATIENTS: We conducted a subgroup analysis (preplanned and post hoc) of a multicenter, double-blind, placebo-controlled, 36-month trial in 7765 women with postmenopausal osteoporosis. Intervention: A single infusion of ZOL 5 mg or placebo was administered at baseline, 12, and 24 months. MAIN OUTCOME MEASURES: Primary endpoints were new vertebral fracture and hip fracture. Secondary endpoints were nonvertebral fracture and change in femoral neck bone mineral density (BMD). Baseline risk factor subgroups were age, BMD T-score and vertebral fracture status, total hip BMD, race, weight, geographical region, smoking, height loss, history of falls, physical activity, prior bisphosphonates, creatinine clearance, body mass index, and concomitant osteoporosis medications. RESULTS: Greater ZOL induced effects on vertebral fracture risk were seen with younger age (treatment-by-subgroup interaction, P = 0.05), normal creatinine clearance (P = 0.04), and body mass index >or= 25 kg/m(2) (P = 0.02). There were no significant treatment-factor interactions for hip or nonvertebral fracture or for change in BMD. CONCLUSIONS: ZOL appeared more effective in preventing vertebral fracture in younger women, overweight/obese women, and women with normal renal function. ZOL had similar effects irrespective of fracture risk factors or femoral neck BMD.
Resumo:
Pb-Zn-Ag vein and listwaenite types of mineralization in Crnac deposit, Western Vardar zone, were deposited within several stages: (i) the pre-ore stage comprises pyrite, arsenopyrite, pyrrhotite, quartz, kaolinite and is followed by magnetite-pyrite; (ii) the syn-ore stage is composed of galena, sphalerite, tetrahedrite and stefanite; and (iii) the post-ore stage is composed of carbonates, pyrite, arsenopyrite and minor galena. The vein type mineralization is hosted by Jurassic amphibolites and veins terminate within overlying serpentinites. Mineralized listwaenites are developed along the serpentinite-amphibolite interface. The reserves are estimated to 1.7 Mt of ore containing in average 7.6% lead, 2.9% zinc, and 102 g/t silver. Sulfides from the pre- and syn-mineralization assemblage of the vein- and listwaenite-types of mineralization from the Crnac Pb-Zn-Ag deposit have been analyzed using microprobe, crush-leachates and sulfur isotopes. The pre-ore assemblage precipitated under high sulfur fugacities (f(S(2)) = 10(-8)-10(-6) bar) from temperatures ranging between 350 degrees C and 380 degrees C. Most likely water-rock reactions, boiling and/or increase of pH caused an increase of delta(34)S of pyrite toward upper levels within the deposit. The decomposition of pre-ore pyrrhotite to a pyrite-magnetite mixture occurred at a fugacity of sulfur from f(S(2)) = 8.7 x 10(-10) to 9.6 x 10(-9) bar and fugacity of oxygen from f(O(2)) = 2.4 x 10(-30) to 3.1 x 10(-28) bars, indicating a contribution of an oxidizing fluid, i.e. meteoric water during pre-ore stages of hydrothermal activity. The crystallization temperatures obtained by the sphalerite-galena isotope geothermometer range from 230 to 310 degrees C. The delta(34)S values of pre- and syn-ore sulfides (pyrite, galena, sphalerite, delta(34)S = 0.3-5.9 parts per thousand) point to magmatic sulfur. Values of delta(34)S of galena and sphalerite are decreasing upwards due to precipitation of early formed sulfide minerals. Post-ore assemblage precipitated at temperature below 190 degrees C. Based on data presented above, we assume two fluid sources: (i) a magmatic source, supported by sulfur isotopic compositions within pre- and syn-ore minerals and a high mol% of fluorine found within pre- and syn-ore leachates, and (ii) a meteoric source, deduced by coincident pyrite-magnetite intergrowth, sulfur isotopic trends within syn-ore minerals and decrease of crystallization temperatures from the pre-ore stage (380-350 degrees C), towards the syn-ore (310-215 degrees C) and post-ore stages (<190 degrees C). Post-ore fluids are Na-Ca-Mg-K-Li chlorine rich and were modified via water-rock reactions. Simple mineral assemblage and sphalerite composition range from 1.5 to 10.1 mol% of FeS catalog Crnac to a group of intermediate sulfidation epithermal deposit. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The trabecular bone score (TBS) is an index of bone microarchitectural texture calculated from anteroposterior dual-energy X-ray absorptiometry (DXA) scans of the lumbar spine (LS) that predicts fracture risk, independent of bone mineral density (BMD). The aim of this study was to compare the effects of yearly intravenous zoledronate (ZOL) versus placebo (PLB) on LS BMD and TBS in postmenopausal women with osteoporosis. Changes in TBS were assessed in the subset of 107 patients recruited at the Department of Osteoporosis of the University Hospital of Berne, Switzerland, who were included in the HORIZON trial. All subjects received adequate calcium and vitamin D3. In these patients randomly assigned to either ZOL (n = 54) or PLB (n = 53) for 3 years, BMD was measured by DXA and TBS assessed by TBS iNsight (v1.9) at baseline and 6, 12, 24, and 36 months after treatment initiation. Baseline characteristics (mean ± SD) were similar between groups in terms of age, 76.8 ± 5.0 years; body mass index (BMI), 24.5 ± 3.6 kg/m(2) ; TBS, 1.178 ± 0.1 but for LS T-score (ZOL-2.9 ± 1.5 versus PLB-2.1 ± 1.5). Changes in LS BMD were significantly greater with ZOL than with PLB at all time points (p < 0.0001 for all), reaching +9.58% versus +1.38% at month 36. Change in TBS was significantly greater with ZOL than with PLB as of month 24, reaching +1.41 versus-0.49% at month 36; p = 0.031, respectively. LS BMD and TBS were weakly correlated (r = 0.20) and there were no correlations between changes in BMD and TBS from baseline at any visit. In postmenopausal women with osteoporosis, once-yearly intravenous ZOL therapy significantly increased LS BMD relative to PLB over 3 years and TBS as of 2 years. © 2013 American Society for Bone and Mineral Research.