45 resultados para Metallic substrate
Resumo:
The present study was designed to explore the thermogenic effect of thyroid hormone administration and the resulting changes in nitrogen homeostasis. Normal male volunteers (n = 7) received thyroxin during 6 weeks. The first 3-week period served to suppress endogenous thyroid secretion (180 micrograms T4/day). This dose was doubled for the next 3 weeks. Sleeping energy expenditure (respiratory chamber) and BMR (hood) were measured by indirect calorimetry, under standardized conditions. Sleeping heart rate was continuously recorded and urine was collected during this 12-hour period to assess nitrogen excretion. The changes in energy expenditure, heart rate and nitrogen balance were then related to the excess thyroxin administered. After 3 weeks of treatment, serum TSH level fell to 0.15 mU/L, indicating an almost complete inhibition of the pituitary-thyroid axis. During this phase of treatment there was an increase in sleeping EE and sleeping heart rate, which increased further by doubling the T4 dose (delta EE: +8.5 +/- 2.3%, delta heart rate +16.1 +/- 2.2%). The T4 dose, which is currently used as a substitutive dose, lead to a borderline hyperthyroid state, with an increase in EE and heart rate. Exogenous T4 administration provoked a significant increase in urinary nitrogen excretion averaging 40%. It is concluded that T4 provokes an important stimulation of EE, which is mostly mediated by an excess protein oxidation.
Resumo:
Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for a ntiviral intervention but also a key player i n the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TCPTP). T he aim of this study was to identify novel cellular substrates o f the N S3-4A protease and to investigate their role in the replication and pathogenesis of HCV. Methods: Cell lines inducibly expressing t he NS3-4A protease were analyzed in basal as well as interferon-α-stimulated states by stable isotopic l abeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling stringent criteria for potential substrates or products of the NS3-4A protease were further i nvestigated in different experimental systems as well a s in liver biopsies from patients with chronic hepatitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 18 candidates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a n ovel cellular substrate of the H CV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a p roviral factor involved in viral particle production but not in HCV entry or HCV RNA replication. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of GPx8 cleavage for protein function are underway. The identification of novel cellular substrates o f the HCV N S3-4A protease should yield new insights i nto the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel targets for antiviral intervention.
Resumo:
A fluorescent oligopeptide substrate for the promastigote surface protease (PSP) of Leishmania was designed using the data reported for the substrate specificity of the enzyme (Bouvier, J., Schneider, P., Etges, R. J., and Bordier, C. 1990. Biochemistry 29, 10113-10119). The indole fluorescence of the tryptophan residue was efficiently quenched through resonance energy transfer by an N-terminal dansyl group located five amino acid residues away. The heptapeptide, dansyl-A-Y-L-K-K-W-V-NH2, was cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 8.8 x 10(6) M-1sec-1. Hydrolysis by the enzyme results in a time-dependent increase of fluorescence intensity of 3.7-fold. Assays can be designed based on the tryptophan fluorescence at 360 nm or by individual product analyses using thin-layer chromatography. The synthetic substrate is readily cleaved by the metalloprotease at the surface of fixed promastigotes. The specificity and sensitivity of such internally quenched fluorescent peptide substrate will facilitate the identification of novel inhibitors for the enzyme and aid in detailed studies on its enzymology.
Resumo:
Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.
Resumo:
The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity, mitochondrial antiviral signaling protein (MAVS) and TRIF, a phosphatase involved in growth factor signaling, T-cell protein tyrosine phosphatase (TC-PTP), and the E3 ubiquitin ligase component UV-damaged DNA-binding protein 1 (DDB1). Here we explored quantitative proteomics to identify novel cellular substrates of the NS3-4A protease. Cell lines inducibly expressing the NS3-4A protease were analyzed by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. This approach identified the membrane-associated peroxidase GPx8 as a bona fide cellular substrate of the HCV NS3-4A protease. Cleavage by NS3-4A occurs at Cys 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic HCV. Overexpression and RNA silencing studies revealed that GPx8 is involved in viral particle production but not in HCV entry or RNA replication. Conclusion: We provide proof-of-concept for the use of quantitative proteomics to identify cellular substrates of a viral protease and describe GPx8 as a novel proviral host factor targeted by the HCV NS3-4A protease. (Hepatology 2014;59:423-433).
Resumo:
PURPOSE: To evaluate the feasibility, efficacy, and tolerance of self-expanding metallic stent insertion under fluoroscopic guidance for palliation of symptoms related to malignant gastroduodenal obstruction. MATERIALS AND METHODS: Seventy-two patients (38 men, 34 women) aged 25-98 years (mean, 62 years) with duodenal (n = 43), antropyloric (n = 13), surgical gastrojejunostomy (n = 10), or pyloroduodenal (n = 6) malignant obstruction were referred for insertion of self-expanding metallic stents over a 6-year period. Stent insertion was performed with use of a peroral or transgastric approach when necessary (n = 11). RESULTS: Stents were successfully inserted in 70 of the 72 patients (97%) and provided symptom relief in 65 patients (90%). Inserted stents were mainly uncovered vascular (n = 55) or enteral (n = 10) Wallstents. One hundred eight stents were initially inserted: one, two, three, or four stents were indicated in 43, 17, nine, and one patient, respectively. Mean follow-up was 119 days (range, 4-513 days). Mean stent patency was 113 days (range, 4-513 days). Mean survival of patients was 120 days. During follow-up, stent obstruction occurred in seven patients as a result of tumoral overgrowth (n = 5) or ingrowth (n = 2). Complications occurred in 12 of the 72 patients (17%), including stent migration (n = 8), stent fracture (n = 1), duodenal perforation (n = 1), and death related to general anesthesia (n = 1). CONCLUSION: Despite a significant complication rate, self-expanding metallic stent insertion under fluoroscopic guidance appears to be a feasible and useful technique in the palliative management of malignant gastroduodenal obstruction.
Resumo:
Metallic foreign bodies are rarely found in the maxillary sinus, and usually they have a dental origin.Potential complications related to foreign bodies include recurrent sinusitis, rhinolith formation, cutaneous fistula,chemical poisoning, facial neuralgic pain and even malignancies.Two main surgical approaches are currently used for the removal of foreign bodies in the maxillary sinus: the bone flap and the endoscopic sinus techniques. We are reporting two unusual cases of large high-velocity foreign bodies removed by a modified maxillary lateral antrotomy,with free bone flap repositioning and fixation with a titanium miniplate.
Resumo:
We present the optical properties of Na0.7CoO2 single crystals, measured over a broad spectral range as a function of temperature (T). The capability to cover the energy range from the far-infrared up to the ultraviolet allows us to perform reliable Kramers-Kronig transformation, in order to obtain the absorption spectrum (i.e., the complex optical conductivity). To the complex optical conductivity we apply the generalized Drude model, extracting the frequency dependence of the scattering rate (Gamma) and effective mass (m*) of the itinerant charge carriers. We find that Gamma(omega) at low temperatures and for similar to omega. This suggests that Na0.7CoO2 is at the verge of a spin-density-wave metallic phase.
Resumo:
To determine the metabolic effects of a single bout of exercise performed after a meal or in the fasting state, nine healthy subjects were studied over two 8-h periods during which net substrate oxidation was monitored by indirect calorimetry. On one occasion, exercise was performed 90 min after ingestion of a meal labeled with [U-13C]glucose [protocol meal-exercise (M-E)]. On the second occasion, exercise was performed after an overnight fast and was followed 30 min later by ingestion of an identical meal [protocol exercise-meal (E-M)]. Energy balances were similar in both protocols, but carbohydrate balance was positive (42.2 +/- 5.1 g), and lipid balance was negative (-11.1 +/- 2.0) during E-M, whereas they were nearly even during M-E. Total glycogen synthesis was calculated as carbohydrate intake minus oxidation of exogenous 13C-labeled carbohydrate (calculated from 13CO2 production). Total glycogen synthesis was increased by 90% (from 47.6 +/- 3.8 to 90.7 +/- 5.4 g, P < 0.0001) during E-M vs. M-E. Endogenous glycogen breakdown was calculated as net carbohydrate oxidation minus oxidation of exogenous carbohydrate and was increased by 44% (from 35.8 +/- 5.6 to 51.7 +/- 6.6 g, P < 0.004) during E-M. It is concluded that exercise performed in the fasting state stimulates glycogen turnover and fat oxidation.
Resumo:
We have recently shown that silencing of the brain/islet specific c-Jun N-terminal Kinase3 (JNK3) isoform enhances both basal and cytokine-induced beta-cell apoptosis, whereas silencing of JNK1 or JNK2 has opposite effects. While it is known that JNK1 or JNK2 may promote apoptosis by inhibiting the activity of the pro-survival Akt pathway, the effect of JNK3 on Akt has not been documented. This study aims to determine the involvement of individual JNKs and specifically JNK3 in the regulation of the Akt signaling pathway in insulin-secreting cells. JNK3 silencing strongly decreases Insulin Receptor Substrate 2 (IRS2) protein expression, and blocks Akt2 but not Akt1 activation by insulin, while the silencing of JNK1 or JNK2 activates both Akt1 and Akt2. Concomitantly, the silencing of JNK1 or JNK2, but not of JNK3, potently phosphorylates the glycogen synthase kinase3 (GSK3β). JNK3 silencing also decreases the activity of the transcription factor Forkhead BoxO3A (FoxO3A) that is known to control IRS2 expression, in addition to increasing c-Jun levels that are known to inhibit insulin gene expression. In conclusion, we propose that JNK1/2 on one hand and JNK3 on the other hand, have opposite effects on insulin-signaling in insulin-secreting cells; JNK3 protects beta-cells from apoptosis and dysfunction mainly through maintenance of a normal IRS2 to Akt2 signaling pathway. It seems that JNK3 mediates its effects mainly at the transcriptional level, while JNK1 or JNK2 appear to mediate their pro-apoptotic effect in the cytoplasm.
Resumo:
The subretinal transplantation of retinal pigment epithelial cells (RPE cells) grown on polymeric supports may have interest in retinal diseases affecting RPE cells. In this study, montmorillonite based polyurethane nanocomposite (PU-NC) was investigated as substrate for human RPE cell growth (ARPE-19 cells). The ARPE-19 cells were seeded on the PU-NC, and cell viability, proliferation and differentiation were investigated. The results indicated that ARPE-19 cells attached, proliferated onto the PU-NC, and expressed occludin. The in vivo ocular biocompatibility of the PU-NC was assessed by using the HET-CAM; and through its implantation under the retina. The direct application of the nanocomposite onto the CAM did not compromise the vascular tissue in the CAM surface, suggesting no ocular irritancy of the PU-NC film. The nanocomposite did not elicit any inflammatory response when implanted into the eye of rats. The PU-NC may have potential application as a substrate for RPE cell transplantation.
Resumo:
PURPOSE: The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training. METHODS: Thirteen OA (64.8 ± 4.9 yr) exercising 5 times per week or more were compared with 14 YA (27.8 ± 4.9 yr) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase, and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. RESULTS: V˙O2peak was lower in OA than YA. The OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, whereas type II fibers were smaller in OA compared with YA. Both groups had similar succinate dehydrogenase content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, carbohydrate-ox was lower in OA but with similar Fat-ox. CONCLUSIONS: Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older with younger athletes matched by exercise mode and frequency.