167 resultados para Ion concentrations
Resumo:
Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in ≤ 21,679 additional individuals. Seven loci (six new regions) in association with serum calcium were identified and replicated. Rs1570669 near CYP24A1 (P = 9.1E-12), rs10491003 upstream of GATA3 (P = 4.8E-09) and rs7481584 in CARS (P = 1.2E-10) implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11), also associated with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10) are near genes that encode distinct isoforms of diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on the genetics of calcium homeostasis.
Resumo:
PURPOSE: In Switzerland, nationwide large-scale radon surveys have been conducted since the early 1980s to establish the distribution of indoor radon concentrations (IRC). The aim of this work was to study the factors influencing IRC in Switzerland using univariate analyses that take into account biases caused by spatial irregularities of sampling. METHODS: About 212,000 IRC measurements carried out in more than 136,000 dwellings were available for this study. A probability map to assess risk of exceeding an IRC of 300 Bq/m(3) was produced using basic geostatistical techniques. Univariate analyses of IRC for different variables, namely the type of radon detector, various building characteristics such as foundation type, year of construction and building type, as well as the altitude, the average outdoor temperature during measurement and the lithology, were performed comparing 95% confidence intervals among classes of each variable. Furthermore, a map showing the spatial aggregation of the number of measurements was generated for each class of variable in order to assess biases due to spatially irregular sampling. RESULTS: IRC measurements carried out with electret detectors were 35% higher than measurements performed with track detectors. Regarding building characteristics, the IRC of apartments are significantly lower than individual houses. Furthermore, buildings with concrete foundations have the lowest IRC. A significant decrease in IRC was found in buildings constructed after 1900 and again after 1970. Moreover, IRC decreases at higher outdoor temperatures. There is also a tendency to have higher IRC with altitude. Regarding lithology, carbonate rock in the Jura Mountains produces significantly higher IRC, almost by a factor of 2, than carbonate rock in the Alps. Sedimentary rock and sediment produce the lowest IRC while carbonate rock from the Jura Mountains and igneous rock produce the highest IRC. Potential biases due to spatially unbalanced sampling of measurements were identified for several influencing factors. CONCLUSIONS: Significant associations were found between IRC and all variables under study. However, we showed that the spatial distribution of samples strongly affected the relevance of those associations. Therefore, future methods to estimate local radon hazards should take the multidimensionality of the process of IRC into account.
Resumo:
The aromatase inhibitor formestane (4-hydroxy-androst-4-ene-3,17-dione, F) is prohibited in sports by the World Anti-Doping Agency (WADA). F possesses only weak androgenic properties and is presumed to be employed in order to suppress estrogen production during the illicit intake of anabolic steroids by athletes. Former studies additionally showed that F is an endogenous steroid produced in low amounts. According to the regulations of WADA, urinary concentrations above 100 ng/ml are assumed to be due to ingestion of F. To distinguish between endogenous or exogenous sources of urinary F, isotope ratio mass spectrometry (IRMS) is the method of choice. Therefore, a method to determine the carbon isotope ratio (CIR) of F in urine samples was developed and validated. Routine samples (n = 42) showing concentrations of F above 5 ng/ml were investigated and enabled elucidation of the CIR of endogenous F and subsequent the calculation of a reference limit. A reference population encompassing n = 90 males and females was investigated regarding endogenous concentrations of F. An excretion study with one male volunteer was conducted to test and validate the developed method and to identify possible impact of F administration on other endogenous steroids. By CIR determination of F it is clearly possible to elucidate its endogenous or exogenous source. Taking into account the CIR of other target analytes like testosterone, a differentiation between F and androstenedione intake is possible. In 2011, the first exogenous F below the WADA threshold could be detected by means of the developed IRMS method.
Resumo:
Calcium uptake by tonoplast enriched membrane vesicles from maize (Zea mays L. cv. LG 11) primary roots was studied. A pH gradient, measured by the fluorescence quenching of quinacrine, was generated across sealed vesicles driven by the pyrophosphate-dependent proton pump. The fluorescence quenching was strongly inhibited by Ca2+; moreover, when increasing Ca2+ concentrations were added to vesicles at steady-state, a concomitant decrease in the proton gradient was observed. Ca2+ uptake using Ca-45(2+) was linear from 10 min when oxalate (10 mM) was present, while Ca2+ uptake was completely inhibited with proton ionophores (FCCP and monensin), indicating a Ca2+/H+ antiport. Membranes were further fractionated using a linear sucrose density gradient (10-45%) and were identified with marker enzymes. Ca2+ uptake co-migrated with the tonoplast pyrophosphate-dependent proton pumping, pyrophosphatase and ATPase activities: the Ca2+/H+ antiport is consequently located at the tonoplast.
Resumo:
A clinically significant proportion of couples experience difficulty in conceiving a child. In about half of these cases male infertility is the cause and often genetic factors are involved. Despite advances in clinical diagnostics ∼50% of male infertility cases remain idiopathic. Based on this, further analysis of infertile males is required to identify new genetic factors involved in male infertility. This review focuses on cation channel of sperm (CATSPER)-related male infertility. It is based on PubMed literature searches using the keywords 'CATSPER', 'male infertility', 'male contraception', 'immunocontraception' and 'pharmacologic contraception' (publication dates from January 1979 to December 2009). Previously, contiguous gene deletions including the CATSPER2 gene implicated the sperm-specific CATSPER channel in syndromic male infertility (SMI). Recently, we identified insertion mutations of the CATSPER1 gene in families with recessively inherited nonsyndromic male infertility (NSMI). The CATSPER channel therefore represents a novel human male fertility factor. In this review we summarize the genetic and clinical data showing the role of CATSPER mutation in human forms of NSMI and SMI. In addition, we discuss clinical management and therapeutic options for these patients. Finally, we describe how the CATSPER channel could be used as a target for development of a male contraceptive.
Resumo:
Glucocorticoids reduce diabetic macular edema, but the mechanisms underlying glucocorticoid effects are imperfectly elucidated. Glucocorticoids may bind to glucocorticoid (GR) and mineralocorticoid (MR) receptors. We hypothesize that MR activation may influence retinal hydration. The effect of the MR agonist aldosterone (24 h) on ion/water channel expression (real-time PCR, Western blot, immunofluorescence) was investigated on cultured retinal Müller glial cells (RMGs, which contribute to fluid homeostasis in the retina), in Lewis rat retinal explants, and in retinas from aldosterone-injected eyes. We evidenced cell-specific expression of MR, GR, and 11-beta-hydroxysteroid dehydrogenase type II. Aldosterone significantly enhances expression of sodium and potassium channels ENaC-alpha (6.5-fold) and Kir4.1 (1.9-fold) through MR and GR occupancy, whereas aquaporin 4 (AQP4, 2.9-fold) up-regulation is MR-selective. Aldosterone intravitreous injection induces retinal swelling (24% increase compared to sham-injected eyes) and activation of RMGs. It promotes additional localization of Kir4.1 and AQP4 toward apical microvilli of RMGs. Our results highlight the mineralocorticoid-sensitivity of the neuroretina and show that aldosterone controls hydration of the healthy retina through regulation of ion/water channels expression in RMGs. These results provide a rationale for future investigations of abnormal MR signaling in the pathological retina.
Resumo:
Objectives: The study objective was to derive reference pharmacokinetic curves of antiretroviral drugs (ART) based on available population pharmacokinetic (Pop-PK) studies that can be used to optimize therapeutic drug monitoring guided dosage adjustment.¦Methods: A systematic search of Pop-PK studies of 8 ART in adults was performed in PubMed. To simulate reference PK curves, a summary of the PK parameters was obtained for each drug based on meta-analysis approach. Most models used one-compartment model, thus chosen as reference model. Models using bi-exponential disposition were simplified to one-compartment, since the first distribution phase was rapid and not determinant for the description of the terminal elimination phase, mostly relevant for this project. Different absorption were standardized for first-order absorption processes.¦Apparent clearance (CL), apparent volume of distribution of the terminal phase (Vz) and absorption rate constant (ka) and inter-individual variability were pooled into summary mean value, weighted by number of plasma levels; intra-individual variability was weighted by number of individuals in each study.¦Simulations based on summary PK parameters served to construct concentration PK percentiles (NONMEM®).¦Concordance between individual and summary parameters was assessed graphically using Forest-plots. To test robustness, difference in simulated curves based on published and summary parameters was calculated using efavirenz as probe drug.¦Results: CL was readily accessible from all studies. For studies with one-compartment, Vz was central volume of distribution; for two-compartment, Vz was CL/λz. ka was directly used or derived based on the mean absorption time (MAT) for more complicated absorption models, assuming MAT=1/ka.¦The value of CL for each drug was in excellent agreement throughout all Pop-PK models, suggesting that minimal concentration derived from summary models was adequately characterized. The comparison of the concentration vs. time profile for efavirenz between published and summary PK parameters revealed not more than 20% difference. Although our approach appears adequate for estimation of elimination phase, the simplification of absorption phase might lead to small bias shortly after drug intake.¦Conclusions: Simulated reference percentile curves based on such an approach represent a useful tool for interpretating drug concentrations. This Pop-PK meta-analysis approach should be further validated and could be extended to elaborate more sophisticated computerized tool for the Bayesian TDM of ART.
Resumo:
Stable isotope labels are routinely introduced into proteomes for quantification purposes. Full labeling of cells in varying biological states, followed by sample mixing, fractionation and intensive data acquisition, is used to obtain accurate large-scale quantification of total protein levels. However, biological processes often affect only a small group of proteins for a short time, resulting in changes that are difficult to detect against the total proteome background. An alternative approach could be the targeted analysis of the proteins synthesized in response to a given biological stimulus. Such proteins can be pulse-labeled with a stable isotope by metabolic incorporation of 'heavy' amino acids. In this study we investigated the specific detection and identification of labeled proteins using acquisition methods based on Precursor Ion Scans (PIS) on a triple-quadrupole ion trap mass spectrometer. PIS-based methods were set to detect unique immonium ions originating from labeled peptides. Different labels and methods were tested in standard mixtures to optimize performance. We showed that, in comparison with an untargeted analysis on the same instrument, the approach allowed a several-fold increase in the specificity of detection of labeled proteins over unlabeled ones. The technique was applied to the identification of proteins secreted by human cells into growth media containing bovine serum proteins, allowing the preferential detection of labeled cellular proteins over unlabeled bovine ones. However, compared with untargeted acquisitions on two different instruments, the PIS-based strategy showed some limitations in sensitivity. We discuss possible perspectives of the technique.
Resumo:
SUMMARY Acid-sensing ion channels (ASICs) are non-voltage gated sodium channels. They are activated by rapid extracellular acidification and generate an inactivating inward current. Four ASIC genes have been cloned: ASIC1, 2, 3 and 4, with variants a and b for ASIC1and AS1C2. ASICs are expressed in neurons of the central (CNS) and peripheral nervous system (PNS). In the CNS, ASICs have a role in learning, memory, as well as in neuronal death in ischemia. In the PNS, ASICs are involved in the perception of acid-induced pain, as well as in mechanoperception. In one part of my thesis project, we addressed the question of the mechanism of regulation of ASIC1 a by the serine protease trypsin at the molecular level. Trypsin modifies the function of ASIC1 a but not of ASIC1b. In order to identify the channel region responsible for this effect, we created chimeras between ASIC1 a and 1b. Subsequently, to identify the exact trypsin target(s), we mutated predicted trypsin sites in the region identified by the chimera. In the second part of a project, we investigated the role of ASICs at the cellular level, in neuronal signaling. Using the whole-cell patch clamp in hippocampal neuronal culture, we studied the potential involvement of ASICs in action potential (AP) generation. In the first part of the thesis work, we showed that trypsin modifies ASIC1a function: it shifts the pH activation and the steady-state inactivation curve towards more acidic values and accelerates the time course of the channel recovery from inactivation. We also showed that trypsin cleaves ASIC1a and that the functional effect and a channel cleavage correlate. In the inactivated state, channels cannot be modified by trypsin. Cleavage occurs in a channel region that is also important for inactivation of all ASICs; a part of this region is critical for the inhibition of ASIC1 a by the spider toxin Psalmotoxin1. In the second part of the thesis work, we showed that ASIC activity can modulate AP generation. ASIC activity by itself can induce trains of APs. In situations in which this activity by itself is not sufficient to induce APs, it can contribute to AP generation. During high neuronal activity, ASIC activity can block already existing trains of APs. In conclusion, depending on the activity of neuron in a particular moment, ASICs can differently modulate AP generation; they can induce, facilitate or inhibit APs. We also showed that trypsin changes the capability of ASICs to modulate AP generation by shifting the pH dependence to more acidic values, which adapts channel gating to pH conditions which may occur in pathological conditions such as ischemia. Our finding that trypsin modifies ASIC1 a function identifies a novel pharmacological tool, and proposes a mechanism of ASIC1a regulation that may have a physiological importance. The identification of the exact site of trypsin action gives insight to the molecular mechanisms of ASIC regulation. This work proposes a role in modulation of AP generation for ASICs in the CNS. RESUME Les canaux ASIC sont les canaux ioniques activés par l'acidification rapide extracellulaire. Activés, ils génèrent un courant entrant qui inactive en présence de stimulus acide. Quatre gènes ASIC ont été clonés, ASIC1, 2, 3 et 4, avec les variants a et b pour ASIC1 et 2. Les ASICs sont exprimés dans les neurones du système nerveux central (SNC) et périphérique (SNP). Dans le SNC, les ASIC ont un rôle dans le mémoire, apprentissage et la mort neuronale dans t'ischémie. Dans le SNP, ils ont un rôle dans la perception de la douleur et méchanosensation. Dans une partie de mon projet de thèse, nous avons étudié les mécanismes de la régulation d'ASIC1a par la sérine-protéase trypsine au niveau moléculaire. La trypsine modifie la fonction d'ASIC1a et pas ASIC1b. Nous avons créé les chimères entre ASIC1 a et 1 b, afin d'identifier la région du canal responsable pour l'effet. Pour identifier le(s) site(s) exactes de l'action de la trypsine, nous avons muté les sites potentiels de la trypsine dans la région identifiée par les chimères. Dans la deuxième partie du projet, nous avons étudié le rôle des ASICs au niveau cellulaire. En utilisant la technique du patch clamp dans les cultures des neurones de l'hippocampe, nous avons étudié l'implication des ASICs dans la génération des potentiels d'action (PA). Nous avons montré que la trypsine agit sur le canal ASIC1a ; elle décale l'activation et « steady-state » inactivation vers les valeurs plus acides, et elle raccourcit le temps du « recovery » du canal. La trypsine coupe ASIC1a sur le résidu K145 et l'effet fonctionnel et la coupure corrèlent. Nous avons identifié la région du canal responsable pour l'inactivation de tous les ASICs ; une partie de cette région est responsable pour ['inhibition d'ASIC1 a par la Psalmotoxinel . Nous avons montré que les ASICs peuvent moduler la génération des PAs. L'activité des ASICs peut induire les trains des PAs. Quand l'activité des ASICs n'est pas suffisante pour induire le PA, elle peut contribuer à sa génération. Pendant l'activité neuronale forte, l'activité des ASICs peut bloquer les trains des PAs qui existent déjà. En conclusion, dépendant de l'activité neuronale, les ASICs peuvent moduler la génération des PAs différemment ; ils peuvent induire, faciliter ou inhiber les PAs. La trypsine change la capacité des ASICs de moduler les PAs. Après l'action de la trypsine, les ASICs peuvent moduler la génération des PAs dans les conditions légèrement acides, suivies par les fluctuations du pH acide, qui peuvent exister dans l'ischémie. Le fait que la trypsine agit sur ASIC1a définit l'outil pharmacologique et propose le mécanisme de la régulation d'ASICI a qui pourrait avoir l'importance physiologique. L'identification du site de l'action de la trypsine éclaircit les mécanismes moléculaires de la régulation des ASICs. Cette étude propose un rôle des ASICs dans la modulation de la génération des PAs. Résumé pour le public large Les neurones sont les cellules de système nerveux dont la fonction est la signalisation. Comme toutes les autres cellules, les neurones ont une membrane qui sépare l'intérieur du milieu extérieur. Cette membrane est imperméable pour des particules chargées (ions). Dans cette membrane existent les protéines spécifiques, « canaux », qui permettent le transport des ions d'un côté de la membrane à l'autre, comme réponse aux stimuli différents. Ce transport des ions à travers la membrane génère un courant, qu'on peut mesurer. Ce courant est la base de la communication entre les neurones, ou, ce qu'on appelle la signalisation neuronale. Quand ce courant est suffisamment grand, il permet la génération du potentiel d'action, qui est le message principal de communication neuronale. Les canaux ASIC (acid-sensing ion channel), que nous étudions dans le laboratoire, sont activés par les acides. Les acides sont relâchés dans beaucoup de situations dans le système nerveux. Les ASIC ont été découverts récemment (en 1996), et nous ne connaissons pas encore très bien toutes les fonctions de ces canaux. Nous savons qu'ils ont un rôle dans le mémoire, apprentissage, la sensation de la douleur et l'infarctus cérébral. Dans la première partie de ce projet de thèse, nous avons voulu mieux comprendre comment fonctionnent ces canaux. Pour faire ça, nous avons étudié la régulation des ASICs par une protéine, trypsine, qui coupe le canal ASIC. Nous avons étudié ou exactement la trypsine coupe le canal et quels effets ça produit sur la fonction du canal. Dans la deuxième partie du projet de thèse, nous avons voulu mieux connaître comment le canal fonctionne au niveau de la cellule, comment il interagit avec les autres canaux et si il a un rôle dans la génération des potentiels d'action. Nous avons pu montrer que la trypsine change la fonction du canal, ce qui lui permet de fonctionner différemment. Nous avons aussi déterminé ou exactement ta trypsine coupe le canal. Au niveau de la cellule, nous avons montré que les ASIC peuvent moduler la génération des potentiels d'action, étant, dépendant de l'activité du neurone, soit activateurs, soit inhibiteurs. La trypsine est une molécule qui peut être libérée dans le système nerveux pendant certaines conditions, comme l'infarctus cérébral. A cause de ça, les connaissances que la trypsine agit sur le anal ASIC pourraient être important physiologiquement. La connaissance de l'endroit exacte ou la trypsine coupe le canal nous aide à mieux comprendre la relation structure-fonction du canal. La modulation de la génération des potentiels d'actions par les ASIC indique que ces canaux peuvent avoir un rôle important dans la signalisation neuronale.
Resumo:
Six patients, five of whom had normal and one impaired renal function, and all suffering from purulent arthritis caused by cephalosporin-sensitive germs, were given a seven-day course of 8 g cephacetrile daily. On the first day, 6 g were administered by continuous intravenous infusion at the rate of 500 mg/h, followed by 2 g over a further 45 min. On days 2 to 7, the patients received 2 short infusions of 4 g each at an interval of 12 h. In four patients with normal renal function, serum half-life ranged from 0.8 to 1.4 h, serum levels during continuous infusion from 19 to 31 microgram/ml, and total clearances from 265 to 434 ml/min. In one patients, these values were 1.6 h, 70 microgram/ml and 131 ml/min respectively (small volume of distribution). The concentrations in the synovial fluid varied from 2 to 29 mcirogram/ml; they were generally lower than the serum levels, but clearly exceeded the minimum inhibitory concentrations for germs commonly present in purulent arthritis. In five patients, the synovial fluid became germ-free and the arthritis was clinically cured. In the case presenting with renal insufficiency, the serum half-life was 5.8 h. During continuous administration, a steady state was not attained; peak serum levels amo9nted to 75 microgram/ml and the total clearance to 61 ml/min. The cephacetrile concentrations in the synovial fluid were very high (26 and 67 microgram/ml). In this case, in which the renal insufficiency associated with mycosis fungoides was present before the treatment, renal function deteriorated futher during treatment while the arthritis improved.
Resumo:
Some forensic and clinical circumstances require knowledge of the frequency of drug use. Care of the patient, administrative, and legal consequences will be different if the subject is a regular or an occasional cannabis smoker. To this end, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) has been proposed as a criterion to help to distinguish between these two groups of users. However, to date this indicator has not been adequately assessed under experimental conditions. We carried out a controlled administration study of smoked cannabis with a placebo. Cannabinoid levels were determined in whole blood using tandem mass spectrometry. Significantly high differences in THCCOOH concentrations were found between the two groups when measured during the screening visit, prior to the smoking session, and throughout the day of the experiment. Receiver operating characteristic (ROC) curves were determined and two threshold criteria were proposed in order to distinguish between these groups: a free THCCOOH concentration below 3 µg/L suggested an occasional consumption (≤ 1 joint/week) while a concentration higher than 40 µg/L corresponded to a heavy use (≥ 10 joints/month). These thresholds were tested and found to be consistent with previously published experimental data. The decision threshold of 40 µg/L could be a cut-off for possible disqualification for driving while under the influence of cannabis. A further medical assessment and follow-up would be necessary for the reissuing of a driving license once abstinence from cannabis has been demonstrated. A THCCOOH level below 3 µg/L would indicate that no medical assessment is required. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon were examined by biochemical and immunocytochemical methods for their development-dependent expression of several cytoskeletal proteins, including the heavy- and medium-sized neurofilament subunits (H-NF and M-NF, respectively); brain spectrin; synapsin I; beta-tubulin; and the microtubule-associated proteins (MAPs) 1, 2, and 5 and tau protein. It was found that with time in culture the levels of most of these cytoskeletal proteins increased greatly, with the exceptions of the particular beta-tubulin form studied, which remained unchanged, and MAP 5, which greatly decreased. Among the neurofilament proteins, expression of M-NF preceded that of H-NF, with the latter being detectable only after approximately 3 weeks in culture. Furthermore, MAP 2 and tau protein showed a development-dependent change in expression from the juvenile toward the adult form. The comparison of these developmental changes in cytoskeletal protein levels with those observed in rat brain tissue revealed that protein expression in aggregate cultures is nearly identical to that in vivo during maturation of the neuronal cytoskeleton. Aggregate cultures deprived of glial cells, i.e., neuron-enriched cultures prepared by treating early cultures with the antimitotic drug cytosine arabinoside, exhibited pronounced deficits in M-NF, H-NF, MAP 2, MAP 1, synapsin I, and brain spectrin, with increased levels of a 145-kDa brain spectrin breakdown product. These adverse effects of glial cell deprivation could be reversed by the maintenance of neuron-enriched cultures at elevated concentrations of KCl (30 mM). This chronic treatment had to be started at an early developmental stage to be effective, a finding suggesting that sustained depolarization by KCl is able to enhance the developmental expression and maturation of the neuronal cytoskeleton.