75 resultados para Hexarotor. Dynamic modeling. Robust backstepping control. EKF Attitude Estimation
Resumo:
The shape of alliance processes over the course of psychotherapy has already been studied in several process-outcome studies on very brief psychotherapy. The present study applies the shape-of-change methodology to short-term dynamic psychotherapies and complements this method with hierarchical linear modeling. A total of 50 psychotherapies of up to 40 sessions were included. Alliance was measured at the end of each session. The results indicate that a linear progression model is most adequate. Three main patterns were found: stable, linear, and quadratic growth. The linear growth pattern, along with the slope parameter, was related to treatment outcome. This study sheds additional light on alliance process research, underscores the importance of linear alliance progression for outcome, and also fosters a better understanding of its limitations.
Resumo:
OBJECTIVE: To assess the determinants of opinions regarding tobacco control policies in the Swiss general population. METHODS: Cross-sectional study conducted between 2003 and 2006 on a random sample of adult residents of Lausanne, Switzerland, aged 35-75 years (2601 women and 2398 men). Nine questions on smoking policies were applied. RESULTS: Ninety-five percent of responders supported policies that would help smokers to quit, 92% no selling of tobacco to subjects aged less than 16 years, 87% a smoking ban in public places and 86% a national campaign against smoking. A further 77% supported a total ban on tobacco advertising, 74% the reimbursement of nicotine replacement therapies and 70% an increase in the price of cigarettes. A lower support was found for two non-evidence-based interventions total ban of tobacco sales (35%) and promotion of light cigarettes (22%). Never smokers, women, physically active subjects, teetotallers and subjects with lower educational level were more likely to favour stronger measures while no differences were found between age groups. Reimbursement of nicotine replacement therapies was favoured more by current smokers and inactive subjects. CONCLUSION: The vast majority of responders supported the recommended tobacco control policies. Opinions regarding specific interventions vary according to the policy and subjects' characteristics.
Resumo:
Nuclear receptors are a major component of signal transduction in animals. They mediate the regulatory activities of many hormones, nutrients and metabolites on the homeostasis and physiology of cells and tissues. It is of high interest to model the corresponding regulatory networks. While molecular and cell biology studies of individual promoters have provided important mechanistic insight, a more complex picture is emerging from genome-wide studies. The regulatory circuitry of nuclear receptor regulated gene expression networks, and their response to cellular signaling, appear highly dynamic, and involve long as well as short range chromatin interactions. We review how progress in understanding the kinetics and regulation of cofactor recruitment, and the development of new genomic methods, provide opportunities but also a major challenge for modeling nuclear receptor mediated regulatory networks.
Resumo:
PURPOSE: Aerodynamic drag plays an important role in performance for athletes practicing sports that involve high-velocity motions. In giant slalom, the skier is continuously changing his/her body posture, and this affects the energy dissipated in aerodynamic drag. It is therefore important to quantify this energy to understand the dynamic behavior of the skier. The aims of this study were to model the aerodynamic drag of alpine skiers in giant slalom simulated conditions and to apply these models in a field experiment to estimate energy dissipated through aerodynamic drag. METHODS: The aerodynamic characteristics of 15 recreational male and female skiers were measured in a wind tunnel while holding nine different skiing-specific postures. The drag and the frontal area were recorded simultaneously for each posture. Four generalized and two individualized models of the drag coefficient were built, using different sets of parameters. These models were subsequently applied in a field study designed to compare the aerodynamic energy losses between a dynamic and a compact skiing technique. RESULTS: The generalized models estimated aerodynamic drag with an accuracy of between 11.00% and 14.28%, and the individualized models estimated aerodynamic drag with an accuracy between 4.52% and 5.30%. The individualized model used for the field study showed that using a dynamic technique led to 10% more aerodynamic drag energy loss than using a compact technique. DISCUSSION: The individualized models were capable of discriminating different techniques performed by advanced skiers and seemed more accurate than the generalized models. The models presented here offer a simple yet accurate method to estimate the aerodynamic drag acting upon alpine skiers while rapidly moving through the range of positions typical to turning technique.
Resumo:
A procedure for the dynamic generation of 1,6-hexamethylene diisocyanate (HDI) aerosol atmospheres of 70 micrograms m-3 (0.01 ppm) to 1.75 mg m-3 (0.25 ppm), based on the precise control of the evaporation of pure liquid HDI and subsequent dilution with air, was developed. The apparatus consisted of a home-made glass nebulizer coupled with a separation stage to exclude non-respirable droplets (greater than 10 microns). The aerosol concentrations were achieved by passing air through the nebulizer at 1.5-4.5 l. min-1 to generate dynamically 0.01-0.25 ppm of diisocyanate in an experimental chamber of 8.55 m3. The distribution of the liquid aerosol was established with an optical counter and the diisocyanate concentration was determined from samples collected in impingers by a high-pressure liquid chromatographic method. The atmospheres generated were suitable for the evaluation both of sampling procedures full scale, and of analytical methods: at 140 micrograms m-3 (0.02 ppm) they remained stable for 15-min provocation tests in clinical asthma, as verified by breath-zone sampling of exposed patients.
Resumo:
BACKGROUND: Complex foot and ankle fractures, such as calcaneum fractures or Lisfranc dislocations, are often associated with a poor outcome, especially in terms of gait capacity. Indeed, degenerative changes often lead to chronic pain and chronic functional limitations. Prescription footwear represents an important therapeutic tool during the rehabilitation process. Local Dynamic Stability (LDS) is the ability of locomotor system to maintain continuous walking by accommodating small perturbations that occur naturally during walking. Because it reflects the degree of control over the gait, LDS has been advocated as a relevant indicator for evaluating different conditions and pathologies. The aim of this study was to analyze changes in LDS induced by orthopaedic shoes in patients with persistent foot and ankle injuries. We hypothesised that footwear adaptation might help patients to improve gait control, which could lead to higher LDS: METHODS: Twenty-five middle-aged inpatients (5 females, 20 males) participated in the study. They were treated for chronic post-traumatic disabilities following ankle and/or foot fractures in a Swiss rehabilitation clinic. During their stay, included inpatients received orthopaedic shoes with custom-made orthoses (insoles). They performed two 30s walking trials with standard shoes and two 30s trials with orthopaedic shoes. A triaxial motion sensor recorded 3D accelerations at the lower back level. LDS was assessed by computing divergence exponents in the acceleration signals (maximal Lyapunov exponents). Pain was evaluated with Visual Analogue Scale (VAS). LDS and pain differences between the trials with standard shoes and the trials with orthopaedic shoes were assessed. RESULTS: Orthopaedic shoes significantly improved LDS in the three axes (medio-lateral: 10% relative change, paired t-test p < 0.001; vertical: 9%, p = 0.03; antero-posterior: 7%, p = 0.04). A significant decrease in pain level (VAS score -29%) was observed. CONCLUSIONS: Footwear adaptation led to pain relief and to improved foot & ankle proprioception. It is likely that that enhancement allows patients to better control foot placement. As a result, higher dynamic stability has been observed. LDS seems therefore a valuable index that could be used in early evaluation of footwear outcome in clinical settings.
Resumo:
One of the key emphases of these three essays is to provide practical managerial insight. However, good practical insight, can only be created by grounding it firmly on theoretical and empirical research. Practical experience-based understanding without theoretical grounding remains tacit and cannot be easily disseminated. Theoretical understanding without links to real life remains sterile. My studies aim to increase the understanding of how radical innovation could be generated at large established firms and how it can have an impact on business performance as most businesses pursue innovation with one prime objective: value creation. My studies focus on large established firms with sales revenue exceeding USD $ 1 billion. Usually large established firms cannot rely on informal ways of management, as these firms tend to be multinational businesses operating with subsidiaries, offices, or production facilities in more than one country. I. Internal and External Determinants of Corporate Venture Capital Investment The goal of this chapter is to focus on CVC as one of the mechanisms available for established firms to source new ideas that can be exploited. We explore the internal and external determinants under which established firms engage in CVC to source new knowledge through investment in startups. We attempt to make scholars and managers aware of the forces that influence CVC activity by providing findings and insights to facilitate the strategic management of CVC. There are research opportunities to further understand the CVC phenomenon. Why do companies engage in CVC? What motivates them to continue "playing the game" and keep their active CVC investment status. The study examines CVC investment activity, and the importance of understanding the influential factors that make a firm decide to engage in CVC. The main question is: How do established firms' CVC programs adapt to changing internal conditions and external environments. Adaptation typically involves learning from exploratory endeavors, which enable companies to transform the ways they compete (Guth & Ginsberg, 1990). Our study extends the current stream of research on CVC. It aims to contribute to the literature by providing an extensive comparison of internal and external determinants leading to CVC investment activity. To our knowledge, this is the first study to examine the influence of internal and external determinants on CVC activity throughout specific expansion and contraction periods determined by structural breaks occurring between 1985 to 2008. Our econometric analysis indicates a strong and significant positive association between CVC activity and R&D, cash flow availability and environmental financial market conditions, as well as a significant negative association between sales growth and the decision to engage into CVC. The analysis of this study reveals that CVC investment is highly volatile, as demonstrated by dramatic fluctuations in CVC investment activity over the past decades. When analyzing the overall cyclical CVC period from 1985 to 2008 the results of our study suggest that CVC activity has a pattern influenced by financial factors such as the level of R&D, free cash flow, lack of sales growth, and external conditions of the economy, with the NASDAQ price index as the most significant variable influencing CVC during this period. II. Contribution of CVC and its Interaction with R&D to Value Creation The second essay takes into account the demands of corporate executives and shareholders regarding business performance and value creation justifications for investments in innovation. Billions of dollars are invested in CVC and R&D. However there is little evidence that CVC and its interaction with R&D create value. Firms operating in dynamic business sectors seek to innovate to create the value demanded by changing market conditions, consumer preferences, and competitive offerings. Consequently, firms operating in such business sectors put a premium on finding new, sustainable and competitive value propositions. CVC and R&D can help them in this challenge. Dushnitsky and Lenox (2006) presented evidence that CVC investment is associated with value creation. However, studies have shown that the most innovative firms do not necessarily benefit from innovation. For instance Oyon (2007) indicated that between 1995 and 2005 the most innovative automotive companies did not obtain adequate rewards for shareholders. The interaction between CVC and R&D has generated much debate in the CVC literature. Some researchers see them as substitutes suggesting that firms have to choose between CVC and R&D (Hellmann, 2002), while others expect them to be complementary (Chesbrough & Tucci, 2004). This study explores the interaction that CVC and R&D have on value creation. This essay examines the impact of CVC and R&D on value creation over sixteen years across six business sectors and different geographical regions. Our findings suggest that the effect of CVC and its interaction with R&D on value creation is positive and significant. In dynamic business sectors technologies rapidly relinquish obsolete, consequently firms operating in such business sectors need to continuously develop new sources of value creation (Eisenhardt & Martin, 2000; Qualls, Olshavsky, & Michaels, 1981). We conclude that in order to impact value creation, firms operating in business sectors such as Engineering & Business Services, and Information Communication & Technology ought to consider CVC as a vital element of their innovation strategy. Moreover, regarding the CVC and R&D interaction effect, our findings suggest that R&D and CVC are complementary to value creation hence firms in certain business sectors can be better off supporting both R&D and CVC simultaneously to increase the probability of generating value creation. III. MCS and Organizational Structures for Radical Innovation Incremental innovation is necessary for continuous improvement but it does not provide a sustainable permanent source of competitiveness (Cooper, 2003). On the other hand, radical innovation pursuing new technologies and new market frontiers can generate new platforms for growth providing firms with competitive advantages and high economic margin rents (Duchesneau et al., 1979; Markides & Geroski, 2005; O'Connor & DeMartino, 2006; Utterback, 1994). Interestingly, not all companies distinguish between incremental and radical innovation, and more importantly firms that manage innovation through a one-sizefits- all process can almost guarantee a sub-optimization of certain systems and resources (Davila et al., 2006). Moreover, we conducted research on the utilization of MCS along with radical innovation and flexible organizational structures as these have been associated with firm growth (Cooper, 2003; Davila & Foster, 2005, 2007; Markides & Geroski, 2005; O'Connor & DeMartino, 2006). Davila et al. (2009) identified research opportunities for innovation management and provided a list of pending issues: How do companies manage the process of radical and incremental innovation? What are the performance measures companies use to manage radical ideas and how do they select them? The fundamental objective of this paper is to address the following research question: What are the processes, MCS, and organizational structures for generating radical innovation? Moreover, in recent years, research on innovation management has been conducted mainly at either the firm level (Birkinshaw, Hamel, & Mol, 2008a) or at the project level examining appropriate management techniques associated with high levels of uncertainty (Burgelman & Sayles, 1988; Dougherty & Heller, 1994; Jelinek & Schoonhoven, 1993; Kanter, North, Bernstein, & Williamson, 1990; Leifer et al., 2000). Therefore, we embarked on a novel process-related research framework to observe the process stages, MCS, and organizational structures that can generate radical innovation. This article is based on a case study at Alcan Engineered Products, a division of a multinational company provider of lightweight material solutions. Our observations suggest that incremental and radical innovation should be managed through different processes, MCS and organizational structures that ought to be activated and adapted contingent to the type of innovation that is being pursued (i.e. incremental or radical innovation). More importantly, we conclude that radical can be generated in a systematic way through enablers such as processes, MCS, and organizational structures. This is in line with the findings of Jelinek and Schoonhoven (1993) and Davila et al. (2006; 2007) who show that innovative firms have institutionalized mechanisms, arguing that radical innovation cannot occur in an organic environment where flexibility and consensus are the main managerial mechanisms. They rather argue that radical innovation requires a clear organizational structure and formal MCS.
Resumo:
Summary Throughout my thesis, I elaborate on how real and financing frictions affect corporate decision making under uncertainty, and I explore how firms time their investment and financing decisions given such frictions. While the macroeconomics literature has focused on the impact of real frictions on investment decisions assuming all equity financed firms, the financial economics literature has mainly focused on the study of financing frictions. My thesis therefore assesses the join interaction of real and financing frictions in firms' dynamic investment and financing decisions. My work provides a rationale for the documented poor empirical performance of neoclassical investment models based on the joint effect of real and financing frictions on investment. A major observation relies in how the infrequency of corporate decisions may affect standard empirical tests. My thesis suggests that the book to market sorts commonly used in the empirical asset pricing literature have economic content, as they control for the lumpiness in firms' optimal investment policies. My work also elaborates on the effects of asymmetric information and strategic interaction on firms' investment and financing decisions. I study how firms time their decision to raise public equity when outside investors lack information about their future investment prospects. I derive areal-options model that predicts either cold or hot markets for new stock issues conditional on adverse selection, and I provide a rational approach to study jointly the market timing of corporate decisions and announcement effects in stock returns. My doctoral dissertation therefore contributes to our understanding of how under real and financing frictions may bias standard empirical tests, elaborates on how adverse selection may induce hot and cold markets in new issues' markets, and suggests how the underlying economic behaviour of firms may induce alternative patterns in stock prices.
Resumo:
The activation of the specific immune response against tumor cells is based on the recognition by the CD8+ Cytotoxic Τ Lymphocytes (CTL), of antigenic peptides (p) presented at the surface of the cell by the class I major histocompatibility complex (MHC). The ability of the so-called T-Cell Receptors (TCR) to discriminate between self and non-self peptides constitutes the most important specific control mechanism against infected cells. The TCR/pMHC interaction has been the subject of much attention in cancer therapy since the design of the adoptive transfer approach, in which Τ lymphocytes presenting an interesting response against tumor cells are extracted from the patient, expanded in vitro, and reinfused after immunodepletion, possibly leading to cancer regression. In the last decade, major progress has been achieved by the introduction of engineered lypmhocytes. In the meantime, the understanding of the molecular aspects of the TCRpMHC interaction has become essential to guide in vitro and in vivo studies. In 1996, the determination of the first structure of a TCRpMHC complex by X-ray crystallography revealed the molecular basis of the interaction. Since then, molecular modeling techniques have taken advantage of crystal structures to study the conformational space of the complex, and understand the specificity of the recognition of the pMHC by the TCR. In the meantime, experimental techniques used to determine the sequences of TCR that bind to a pMHC complex have been used intensively, leading to the collection of large repertoires of TCR sequences that are specific for a given pMHC. There is a growing need for computational approaches capable of predicting the molecular interactions that occur upon TCR/pMHC binding without relying on the time consuming resolution of a crystal structure. This work presents new approaches to analyze the molecular principles that govern the recognition of the pMHC by the TCR and the subsequent activation of the T-cell. We first introduce TCRep 3D, a new method to model and study the structural properties of TCR repertoires, based on homology and ab initio modeling. We discuss the methodology in details, and demonstrate that it outperforms state of the art modeling methods in predicting relevant TCR conformations. Two successful applications of TCRep 3D that supported experimental studies on TCR repertoires are presented. Second, we present a rigid body study of TCRpMHC complexes that gives a fair insight on the TCR approach towards pMHC. We show that the binding mode of the TCR is correctly described by long-distance interactions. Finally, the last section is dedicated to a detailed analysis of an experimental hydrogen exchange study, which suggests that some regions of the constant domain of the TCR are subject to conformational changes upon binding to the pMHC. We propose a hypothesis of the structural signaling of TCR molecules leading to the activation of the T-cell. It is based on the analysis of correlated motions in the TCRpMHC structure. - L'activation de la réponse immunitaire spécifique dirigée contre les cellules tumorales est basée sur la reconnaissance par les Lymphocytes Τ Cytotoxiques (CTL), d'un peptide antigénique (p) présenté à la suface de la cellule par le complexe majeur d'histocompatibilité de classe I (MHC). La capacité des récepteurs des lymphocytes (TCR) à distinguer les peptides endogènes des peptides étrangers constitue le mécanisme de contrôle le plus important dirigé contre les cellules infectées. L'interaction entre le TCR et le pMHC est le sujet de beaucoup d'attention dans la thérapie du cancer, depuis la conception de la méthode de transfer adoptif: les lymphocytes capables d'une réponse importante contre les cellules tumorales sont extraits du patient, amplifiés in vitro, et réintroduits après immunosuppression. Il peut en résulter une régression du cancer. Ces dix dernières années, d'importants progrès ont été réalisés grâce à l'introduction de lymphocytes modifiés par génie génétique. En parallèle, la compréhension du TCRpMHC au niveau moléculaire est donc devenue essentielle pour soutenir les études in vitro et in vivo. En 1996, l'obtention de la première structure du complexe TCRpMHC à l'aide de la cristallographie par rayons X a révélé les bases moléculaires de l'interaction. Depuis lors, les techniques de modélisation moléculaire ont exploité les structures expérimentales pour comprendre la spécificité de la reconnaissance du pMHC par le TCR. Dans le même temps, de nouvelles techniques expérimentales permettant de déterminer la séquence de TCR spécifiques envers un pMHC donné, ont été largement exploitées. Ainsi, d'importants répertoires de TCR sont devenus disponibles, et il est plus que jamais nécessaire de développer des approches informatiques capables de prédire les interactions moléculaires qui ont lieu lors de la liaison du TCR au pMHC, et ce sans dépendre systématiquement de la résolution d'une structure cristalline. Ce mémoire présente une nouvelle approche pour analyser les principes moléculaires régissant la reconnaissance du pMHC par le TCR, et l'activation du lymphocyte qui en résulte. Dans un premier temps, nous présentons TCRep 3D, une nouvelle méthode basée sur les modélisations par homologie et ab initio, pour l'étude de propriétés structurales des répertoires de TCR. Le procédé est discuté en détails et comparé à des approches standard. Nous démontrons ainsi que TCRep 3D est le plus performant pour prédire des conformations pertinentes du TCR. Deux applications à des études expérimentales des répertoires TCR sont ensuite présentées. Dans la seconde partie de ce travail nous présentons une étude de complexes TCRpMHC qui donne un aperçu intéressant du mécanisme d'approche du pMHC par le TCR. Finalement, la dernière section se concentre sur l'analyse détaillée d'une étude expérimentale basée sur les échanges deuterium/hydrogène, dont les résultats révèlent que certaines régions clés du domaine constant du TCR sont sujettes à un changement conformationnel lors de la liaison au pMHC. Nous proposons une hypothèse pour la signalisation structurelle des TCR, menant à l'activation du lymphocyte. Celle-ci est basée sur l'analyse des mouvements corrélés observés dans la structure du TCRpMHC.
Resumo:
The n-octanol/water partition coefficient (log Po/w) is a key physicochemical parameter for drug discovery, design, and development. Here, we present a physics-based approach that shows a strong linear correlation between the computed solvation free energy in implicit solvents and the experimental log Po/w on a cleansed data set of more than 17,500 molecules. After internal validation by five-fold cross-validation and data randomization, the predictive power of the most interesting multiple linear model, based on two GB/SA parameters solely, was tested on two different external sets of molecules. On the Martel druglike test set, the predictive power of the best model (N = 706, r = 0.64, MAE = 1.18, and RMSE = 1.40) is similar to six well-established empirical methods. On the 17-drug test set, our model outperformed all compared empirical methodologies (N = 17, r = 0.94, MAE = 0.38, and RMSE = 0.52). The physical basis of our original GB/SA approach together with its predictive capacity, computational efficiency (1 to 2 s per molecule), and tridimensional molecular graphics capability lay the foundations for a promising predictor, the implicit log P method (iLOGP), to complement the portfolio of drug design tools developed and provided by the SIB Swiss Institute of Bioinformatics.
Resumo:
The differentiation between benign and malignant focal liver lesions plays an important role in diagnosis of liver disease and therapeutic planning of local or general disease. This differentiation, based on characterization, relies on the observation of the dynamic vascular patterns (DVP) of lesions with respect to adjacent parenchyma, and may be assessed during contrast-enhanced ultrasound imaging after a bolus injection. For instance, hemangiomas (i.e., benign lesions) exhibit hyper-enhanced signatures over time, whereas metastases (i.e., malignant lesions) frequently present hyperenhanced foci during the arterial phase and always become hypo-enhanced afterwards. The objective of this work was to develop a new parametric imaging technique, aimed at mapping the DVP signatures into a single image called a DVP parametric image, conceived as a diagnostic aid tool for characterizing lesion types. The methodology consisted in processing a time sequence of images (DICOM video data) using four consecutive steps: (1) pre-processing combining image motion correction and linearization to derive an echo-power signal, in each pixel, proportional to local contrast agent concentration over time; (2) signal modeling, by means of a curve-fitting optimization, to compute a difference signal in each pixel, as the subtraction of adjacent parenchyma kinetic from the echopower signal; (3) classification of difference signals; and (4) parametric image rendering to represent classified pixels as a support for diagnosis. DVP parametric imaging was the object of a clinical assessment on a total of 146 lesions, imaged using different medical ultrasound systems. The resulting sensitivity and specificity were 97% and 91%, respectively, which compare favorably with scores of 81 to 95% and 80 to 95% reported in medical literature for sensitivity and specificity, respectively.
Identification of optimal structural connectivity using functional connectivity and neural modeling.
Resumo:
The complex network dynamics that arise from the interaction of the brain's structural and functional architectures give rise to mental function. Theoretical models demonstrate that the structure-function relation is maximal when the global network dynamics operate at a critical point of state transition. In the present work, we used a dynamic mean-field neural model to fit empirical structural connectivity (SC) and functional connectivity (FC) data acquired in humans and macaques and developed a new iterative-fitting algorithm to optimize the SC matrix based on the FC matrix. A dramatic improvement of the fitting of the matrices was obtained with the addition of a small number of anatomical links, particularly cross-hemispheric connections, and reweighting of existing connections. We suggest that the notion of a critical working point, where the structure-function interplay is maximal, may provide a new way to link behavior and cognition, and a new perspective to understand recovery of function in clinical conditions.
Resumo:
Lesions of anatomical brain networks result in functional disturbances of brain systems and behavior which depend sensitively, often unpredictably, on the lesion site. The availability of whole-brain maps of structural connections within the human cerebrum and our increased understanding of the physiology and large-scale dynamics of cortical networks allow us to investigate the functional consequences of focal brain lesions in a computational model. We simulate the dynamic effects of lesions placed in different regions of the cerebral cortex by recording changes in the pattern of endogenous ("resting-state") neural activity. We find that lesions produce specific patterns of altered functional connectivity among distant regions of cortex, often affecting both cortical hemispheres. The magnitude of these dynamic effects depends on the lesion location and is partly predicted by structural network properties of the lesion site. In the model, lesions along the cortical midline and in the vicinity of the temporo-parietal junction result in large and widely distributed changes in functional connectivity, while lesions of primary sensory or motor regions remain more localized. The model suggests that dynamic lesion effects can be predicted on the basis of specific network measures of structural brain networks and that these effects may be related to known behavioral and cognitive consequences of brain lesions.
Resumo:
This study investigated the spatial, spectral, temporal and functional proprieties of functional brain connections involved in the concurrent execution of unrelated visual perception and working memory tasks. Electroencephalography data was analysed using a novel data-driven approach assessing source coherence at the whole-brain level. Three connections in the beta-band (18-24 Hz) and one in the gamma-band (30-40 Hz) were modulated by dual-task performance. Beta-coherence increased within two dorsofrontal-occipital connections in dual-task conditions compared to the single-task condition, with the highest coherence seen during low working memory load trials. In contrast, beta-coherence in a prefrontal-occipital functional connection and gamma-coherence in an inferior frontal-occipitoparietal connection was not affected by the addition of the second task and only showed elevated coherence under high working memory load. Analysis of coherence as a function of time suggested that the dorsofrontal-occipital beta-connections were relevant to working memory maintenance, while the prefrontal-occipital beta-connection and the inferior frontal-occipitoparietal gamma-connection were involved in top-down control of concurrent visual processing. The fact that increased coherence in the gamma-connection, from low to high working memory load, was negatively correlated with faster reaction time on the perception task supports this interpretation. Together, these results demonstrate that dual-task demands trigger non-linear changes in functional interactions between frontal-executive and occipitoparietal-perceptual cortices.
Resumo:
Plants maintain stem cells in their meristems as a source for new undifferentiated cells throughout their life. Meristems are small groups of cells that provide the microenvironment that allows stem cells to prosper. Homeostasis of a stem cell domain within a growing meristem is achieved by signalling between stem cells and surrounding cells. We have here simulated the origin and maintenance of a defined stem cell domain at the tip of Arabidopsis shoot meristems, based on the assumption that meristems are self-organizing systems. The model comprises two coupled feedback regulated genetic systems that control stem cell behaviour. Using a minimal set of spatial parameters, the mathematical model allows to predict the generation, shape and size of the stem cell domain, and the underlying organizing centre. We use the model to explore the parameter space that allows stem cell maintenance, and to simulate the consequences of mutations, gene misexpression and cell ablations.