54 resultados para Graph Colourings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As in cancer biology, in wound healing there is a need for objective staging systems to decide for the best treatment and predictors of outcome. We developed in the diabetic (db/db) wound healing model, a staging system, the "wound watch," based on the quantification of angiogenesis and cell proliferation in open wounds. In chronic wounds, there is often a lack of cellular proliferation and angiogenesis that leads to impaired healing. The wound watch addresses this by quantifying the proliferative phase of wound healing in two dimensions (cellular division and angiogenesis). The results are plotted in a two-dimensional graph to monitor the course of healing and compare the response to different treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently graph theory and complex networks have been widely used as a mean to model functionality of the brain. Among different neuroimaging techniques available for constructing the brain functional networks, electroencephalography (EEG) with its high temporal resolution is a useful instrument of the analysis of functional interdependencies between different brain regions. Alzheimer's disease (AD) is a neurodegenerative disease, which leads to substantial cognitive decline, and eventually, dementia in aged people. To achieve a deeper insight into the behavior of functional cerebral networks in AD, here we study their synchronizability in 17 newly diagnosed AD patients compared to 17 healthy control subjects at no-task, eyes-closed condition. The cross-correlation of artifact-free EEGs was used to construct brain functional networks. The extracted networks were then tested for their synchronization properties by calculating the eigenratio of the Laplacian matrix of the connection graph, i.e., the largest eigenvalue divided by the second smallest one. In AD patients, we found an increase in the eigenratio, i.e., a decrease in the synchronizability of brain networks across delta, alpha, beta, and gamma EEG frequencies within the wide range of network costs. The finding indicates the destruction of functional brain networks in early AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A haplotype is an m-long binary vector. The XOR-genotype of two haplotypes is the m-vector of their coordinate-wise XOR. We study the following problem: Given a set of XOR-genotypes, reconstruct their haplotypes so that the set of resulting haplotypes can be mapped onto a perfect phylogeny (PP) tree. The question is motivated by studying population evolution in human genetics, and is a variant of the perfect phylogeny haplotyping problem that has received intensive attention recently. Unlike the latter problem, in which the input is "full" genotypes, here we assume less informative input, and so may be more economical to obtain experimentally. Building on ideas of Gusfield, we show how to solve the problem in polynomial time, by a reduction to the graph realization problem. The actual haplotypes are not uniquely determined by that tree they map onto, and the tree itself may or may not be unique. We show that tree uniqueness implies uniquely determined haplotypes, up to inherent degrees of freedom, and give a sufficient condition for the uniqueness. To actually determine the haplotypes given the tree, additional information is necessary. We show that two or three full genotypes suffice to reconstruct all the haplotypes, and present a linear algorithm for identifying those genotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher risk for long-term behavioral and emotional sequelae, with attentional problems (with or without hyperactivity) is now becoming one of the hallmarks of extreme premature (EP) birth and birth after pregancy conditions leading to poor intra uterine growth restriction (IUGR) [1,2]. However, little is know so far about the neurostructural basis of these complexe brain functional abnormalities that seem to have their origins in early critical periods of brain development. The development of cortical axonal pathways happens in a series of sequential events. The preterm phase (24-36 post conecptional weeks PCW) is known for being crucial for growth of the thalamocortical fiber bundles as well as for the development of long projectional, commisural and projectional fibers [3]. Is it logical to expect, thus, that being exposed to altered intrauterine environment (altered nutrition) or to extrauterine environment earlier that expected, lead to alterations in the structural organization and, consequently, alter the underlying white matter (WM) structure. Understanding rate and variability of normal brain development, and detect differences from typical development may offer insight into the neurodevelopmental anomalies that can be imaged at later stages. Due to its unique ability to non-invasively visualize and quantify in vivo white matter tracts in the brain, in this study we used diffusion MRI (dMRI) tractography to derive brain graphs [4,5,6]. This relatively simple way of modeling the brain enable us to use graph theory to study topological properties of brain graphs in order to study the effects of EP and IUGR on childrens brain connectivity at age 6 years old.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the dispersal routes reconstruction problem can be stated as an instance of a graph theoretical problem known as the minimum cost arborescence problem, for which there exist efficient algorithms. Furthermore, we derive some theoretical results, in a simplified setting, on the possible optimal values that can be obtained for this problem. With this, we place the dispersal routes reconstruction problem on solid theoretical grounds, establishing it as a tractable problem that also lends itself to formal mathematical and computational analysis. Finally, we present an insightful example of how this framework can be applied to real data. We propose that our computational method can be used to define the most parsimonious dispersal (or invasion) scenarios, which can then be tested using complementary methods such as genetic analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a thorough aggregation of probability and graph theory, Bayesian networks currently enjoy widespread interest as a means for studying factors that affect the coherent evaluation of scientific evidence in forensic science. Paper I of this series of papers intends to contribute to the discussion of Bayesian networks as a framework that is helpful for both illustrating and implementing statistical procedures that are commonly employed for the study of uncertainties (e.g. the estimation of unknown quantities). While the respective statistical procedures are widely described in literature, the primary aim of this paper is to offer an essentially non-technical introduction on how interested readers may use these analytical approaches - with the help of Bayesian networks - for processing their own forensic science data. Attention is mainly drawn to the structure and underlying rationale of a series of basic and context-independent network fragments that users may incorporate as building blocs while constructing larger inference models. As an example of how this may be done, the proposed concepts will be used in a second paper (Part II) for specifying graphical probability networks whose purpose is to assist forensic scientists in the evaluation of scientific evidence encountered in the context of forensic document examination (i.e. results of the analysis of black toners present on printed or copied documents).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Joint inversion of crosshole ground-penetrating radar and seismic data can improve model resolution and fidelity of the resultant individual models. Model coupling obtained by minimizing or penalizing some measure of structural dissimilarity between models appears to be the most versatile approach because only weak assumptions about petrophysical relationships are required. Nevertheless, experimental results and petrophysical arguments suggest that when porosity variations are weak in saturated unconsolidated environments, then radar wave speed is approximately linearly related to seismic wave speed. Under such circumstances, model coupling also can be achieved by incorporating cross-covariances in the model regularization. In two case studies, structural similarity is imposed by penalizing models for which the model cross-gradients are nonzero. A first case study demonstrates improvements in model resolution by comparing the resulting models with borehole information, whereas a second case study uses point-spread functions. Although radar seismic wavespeed crossplots are very similar for the two case studies, the models plot in different portions of the graph, suggesting variances in porosity. Both examples display a close, quasilinear relationship between radar seismic wave speed in unconsolidated environments that is described rather well by the corresponding lower Hashin-Shtrikman (HS) bounds. Combining crossplots of the joint inversion models with HS bounds can constrain porosity and pore structure better than individual inversion results can.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A haplotype is an m-long binary vector. The XOR-genotype of two haplotypes is the m-vector of their coordinate-wise XOR. We study the following problem: Given a set of XOR-genotypes, reconstruct their haplotypes so that the set of resulting haplotypes can be mapped onto a perfect phylogeny (PP) tree. The question is motivated by studying population evolution in human genetics and is a variant of the PP haplotyping problem that has received intensive attention recently. Unlike the latter problem, in which the input is '' full '' genotypes, here, we assume less informative input and so may be more economical to obtain experimentally. Building on ideas of Gusfield, we show how to solve the problem in polynomial time by a reduction to the graph realization problem. The actual haplotypes are not uniquely determined by the tree they map onto and the tree itself may or may not be unique. We show that tree uniqueness implies uniquely determined haplotypes, up to inherent degrees of freedom, and give a sufficient condition for the uniqueness. To actually determine the haplotypes given the tree, additional information is necessary. We show that two or three full genotypes suffice to reconstruct all the haplotypes and present a linear algorithm for identifying those genotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is often considered as a dysconnection syndrome in which, abnormal interactions between large-scale functional brain networks result in cognitive and perceptual deficits. In this article we apply the graph theoretic measures to brain functional networks based on the resting EEGs of fourteen schizophrenic patients in comparison with those of fourteen matched control subjects. The networks were extracted from common-average-referenced EEG time-series through partial and unpartial cross-correlation methods. Unpartial correlation detects functional connectivity based on direct and/or indirect links, while partial correlation allows one to ignore indirect links. We quantified the network properties with the graph metrics, including mall-worldness, vulnerability, modularity, assortativity, and synchronizability. The schizophrenic patients showed method-specific and frequency-specific changes especially pronounced for modularity, assortativity, and synchronizability measures. However, the differences between schizophrenia patients and normal controls in terms of graph theory metrics were stronger for the unpartial correlation method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants propagate electrical signals in response to artificial wounding. However, little is known about the electrophysiological responses of the phloem to wounding, and whether natural damaging stimuli induce propagating electrical signals in this tissue. Here, we used living aphids and the direct current (DC) version of the electrical penetration graph (EPG) to detect changes in the membrane potential of Arabidopsis sieve elements (SEs) during caterpillar wounding. Feeding wounds in the lamina induced fast depolarization waves in the affected leaf, rising to maximum amplitude (c. 60 mV) within 2 s. Major damage to the midvein induced fast and slow depolarization waves in unwounded neighbor leaves, but only slow depolarization waves in non-neighbor leaves. The slow depolarization waves rose to maximum amplitude (c. 30 mV) within 14 s. Expression of a jasmonate-responsive gene was detected in leaves in which SEs displayed fast depolarization waves. No electrical signals were detected in SEs of unwounded neighbor leaves of plants with suppressed expression of GLR3.3 and GLR3.6. EPG applied as a novel approach to plant electrophysiology allows cell-specific, robust, real-time monitoring of early electrophysiological responses in plant cells to damage, and is potentially applicable to a broad range of plant-herbivore interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: At high magnetic field strengths (B0 ≥ 3 T), the shorter radiofrequency wavelength produces an inhomogeneous distribution of the transmit magnetic field. This can lead to variable contrast across the brain which is particularly pronounced in T2 -weighted imaging that requires multiple radiofrequency pulses. To obtain T2 -weighted images with uniform contrast throughout the whole brain at 7 T, short (2-3 ms) 3D tailored radiofrequency pulses (kT -points) were integrated into a 3D variable flip angle turbo spin echo sequence. METHODS: The excitation and refocusing "hard" pulses of a variable flip angle turbo spin echo sequence were replaced with kT -point pulses. Spatially resolved extended phase graph simulations and in vivo acquisitions at 7 T, utilizing both single channel and parallel-transmit systems, were used to test different kT -point configurations. RESULTS: Simulations indicated that an extended optimized k-space trajectory ensured a more homogeneous signal throughout images. In vivo experiments showed that high quality T2 -weighted brain images with uniform signal and contrast were obtained at 7 T by using the proposed methodology. CONCLUSION: This work demonstrates that T2 -weighted images devoid of artifacts resulting from B1 (+) inhomogeneity can be obtained at high field through the optimization of extended kT -point pulses. Magn Reson Med 71:1478-1488, 2014. © 2013 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combinatorial optimization involves finding an optimal solution in a finite set of options; many everyday life problems are of this kind. However, the number of options grows exponentially with the size of the problem, such that an exhaustive search for the best solution is practically infeasible beyond a certain problem size. When efficient algorithms are not available, a practical approach to obtain an approximate solution to the problem at hand, is to start with an educated guess and gradually refine it until we have a good-enough solution. Roughly speaking, this is how local search heuristics work. These stochastic algorithms navigate the problem search space by iteratively turning the current solution into new candidate solutions, guiding the search towards better solutions. The search performance, therefore, depends on structural aspects of the search space, which in turn depend on the move operator being used to modify solutions. A common way to characterize the search space of a problem is through the study of its fitness landscape, a mathematical object comprising the space of all possible solutions, their value with respect to the optimization objective, and a relationship of neighborhood defined by the move operator. The landscape metaphor is used to explain the search dynamics as a sort of potential function. The concept is indeed similar to that of potential energy surfaces in physical chemistry. Borrowing ideas from that field, we propose to extend to combinatorial landscapes the notion of the inherent network formed by energy minima in energy landscapes. In our case, energy minima are the local optima of the combinatorial problem, and we explore several definitions for the network edges. At first, we perform an exhaustive sampling of local optima basins of attraction, and define weighted transitions between basins by accounting for all the possible ways of crossing the basins frontier via one random move. Then, we reduce the computational burden by only counting the chances of escaping a given basin via random kick moves that start at the local optimum. Finally, we approximate network edges from the search trajectory of simple search heuristics, mining the frequency and inter-arrival time with which the heuristic visits local optima. Through these methodologies, we build a weighted directed graph that provides a synthetic view of the whole landscape, and that we can characterize using the tools of complex networks science. We argue that the network characterization can advance our understanding of the structural and dynamical properties of hard combinatorial landscapes. We apply our approach to prototypical problems such as the Quadratic Assignment Problem, the NK model of rugged landscapes, and the Permutation Flow-shop Scheduling Problem. We show that some network metrics can differentiate problem classes, correlate with problem non-linearity, and predict problem hardness as measured from the performances of trajectory-based local search heuristics.