302 resultados para Dopamine Antagonists
Resumo:
Background: Symptom relief is the traditional treatment goal in Crohn's disease (CD). New goals including mucosal healing and bowel preservation are now achievable with tumor necrosis factor (TNF) antagonists. Infliximab and adalimumab are approved as second-line treatments for severe, active CD. Certolizumab pegol is approved only in the U.S. and Switzerland as second-line treatment for moderate-to-severe, active CD. Data from trials of infliximab suggest that high-risk patients and patients with active inflammation (CRP elevation and/or ileocolonic ulcers) may benefit from earlier use of this drug.
Resumo:
Rapid induction of withdrawal by opiate antagonists under anesthesia is an opiate detoxification technique. This technique is useful to reduce intensity and duration of withdrawal. Therefore, this technique represents an alternative strategy in the treatment of opiate addicted patients. This paper attempts to present a brief history of this technique, and a critical review of related issues.
Resumo:
The beta 2-adrenergic receptor undergoes isomerization between an inactive conformation (R) and an active conformation (R*). The formation of the active conformation of the receptor molecule can be promoted by adrenergic agonists or by mutations in the third cytoplasmic domain that constitutively activate the receptor. Here we show that, of several beta-adrenergic receptor-blocking drugs tested, only two, ICI 118551 and betaxolol, inhibit the basal signaling activity of the beta 2-adrenergic receptor, thus acting as negative antagonists. We document the molecular properties of the more efficacious ICI 118551; (i) it shows higher affinity for the inactive form of the receptor and (ii) it inhibits the spontaneous formation of a beta-adrenergic receptor kinase substrate by the receptor. These properties are opposite those of adrenergic agonists, indicating that, in a fashion reciprocal to that of agonists, negative antagonists promote the formation of an inactive conformation of the receptor.
Resumo:
Drugs of abuse, such as psychostimulants and opiates, are generally considered as exerting their locomotor and rewarding effects through an increased dopaminergic transmission in the nucleus accumbens. Noradrenergic transmission may also be implicated because most psychostimulants increase norepinephrine (NE) release, and numerous studies have indicated interactions between noradrenergic and dopaminergic neurons through alpha1-adrenergic receptors. However, analysis of the effects of psychostimulants after either destruction of noradrenergic neurons or pharmacological blockade of alpha1-adrenergic receptors led to conflicting results. Here we show that the locomotor hyperactivities induced by d-amphetamine (1-3 mg/kg), cocaine (5-20 mg/kg), or morphine (5-10 mg/kg) in mice lacking the alpha1b subtype of adrenergic receptors were dramatically decreased when compared with wild-type littermates. Moreover, behavioral sensitizations induced by d-amphetamine (1-2 mg/kg), cocaine (5-15 mg/kg), or morphine (7.5 mg/kg) were also decreased in knock-out mice when compared with wild-type. Ruling out a neurological deficit in knock-out mice, both strains reacted similarly to novelty, to intraperitoneal saline, or to the administration of scopolamine (1 mg/kg), an anti-muscarinic agent. Finally, rewarding properties could not be observed in knock-out mice in an oral preference test (cocaine and morphine) and conditioned place preference (morphine) paradigm. Because catecholamine tissue levels, autoradiography of D1 and D2 dopaminergic receptors, and of dopamine reuptake sites and locomotor response to a D1 agonist showed that basal dopaminergic transmission was similar in knock-out and wild-type mice, our data indicate a critical role of alpha1b-adrenergic receptors and noradrenergic transmission in the vulnerability to addiction.
Resumo:
Aim: The insulin sensitizer rosiglitazone (RTZ) acts by activating peroxisome proliferator and activated receptor gamma (PPAR gamma), an effect accompanied in vivo in humans by an increase in fat storage. We hypothesized that this effect concerns PPARgamma(1) and PPARgamma(2) differently and is dependant on the origin of the adipose cells (subcutaneous or visceral). To this aim, the effect of RTZ, the PPARgamma antagonist GW9662 and lentiviral vectors expressing interfering RNA were evaluated on human pre-adipocyte models. Methods: Two models were investigated: the human pre-adipose cell line Chub-S7 and primary pre-adipocytes derived from subcutaneous and visceral biopsies of adipose tissue (AT) obtained from obese patients. Cells were used to perform oil-red O staining, gene expression measurements and lentiviral infections. Results: In both models, RTZ was found to stimulate the differentiation of pre-adipocytes into mature cells. This was accompanied by significant increases in both the PPARgamma(1) and PPARgamma(2) gene expression, with a relatively stronger stimulation of PPARgamma(2). In contrast, RTZ failed to stimulate differentiation processes when cells were incubated in the presence of GW9662. This effect was similar to the effect observed using interfering RNA against PPARgamma(2). It was accompanied by an abrogation of the RTZ-induced PPARgamma(2) gene expression, whereas the level of PPARgamma(1) was not affected. Conclusions: Both the GW9662 treatment and interfering RNA against PPARgamma(2) are able to abrogate RTZ-induced differentiation without a significant change of PPARgamma(1) gene expression. These results are consistent with previous results obtained in animal models and suggest that in humans PPARgamma(2) may also be the key isoform involved in fat storage.
Resumo:
Alpha-D-mannopyranosides are potent FimH antagonists, which inhibit the adhesion of Escherichia coli to highly mannosylated uroplakin Ia on the urothelium and therefore offer an efficient therapeutic opportunity for the treatment and prevention of urinary tract infection. For the evaluation of the therapeutic potential of FimH antagonists, their effect on the disaggregation of E. coli from Candida albicans and guinea pig erythrocytes (GPE) was studied. The mannose-specific binding of E. coli to yeast cells and erythrocytes is mediated by type 1 pili and can be monitored by aggregometry. Maximal aggregation of C. albicans or GPE to E. coli is reached after 600 s. Then the FimH antagonist was added and disaggregation determined by light transmission over a period of 1400 s. A FimH-deleted mutant of E. coli, which does not induce any aggregation, was used in a control experiment. The activities of FimH antagonists are expressed as IC(50)s, the half maximal inhibitory concentration of the disaggregation potential. n-Heptyl alpha-D-mannopyranoside (1) was used as a reference compound and exhibits an IC(50) of 77.14 microM , whereas methyl alpha-D-mannopyranoside (2) does not lead to any disaggregation at concentrations up to 800 microM. o-Chloro-p-[N-(2-ethoxy-3,4-dioxocyclobut-1-enyl)amino]phenyl alpha-D-mannopyranoside (3) shows a 90-fold and 2-chloro-4-nitrophenyl alpha-D-mannopyranoside (4) a 6-fold increased affinity compared to 1. Finally, 4-nitrophenyl alpha-D-mannopyranoside (5) exhibits an activity similar to 1. As negative control, D-galactose (6) was used. The standardized aggregation assay generates concentration-dependent, reproducible data allowing the evaluation of FimH antagonists according to their potency to inhibit E. coli adherence and can therefore be employed to select candidates for experimental and clinical studies for treatment and prevention of urinary tract infections.
Resumo:
BACKGROUND: Indomethacin therapy for closure of a patent ductus arteriosus in preterm neonates is responsible for transient renal insufficiency. Dopamine theoretically reduces the renal side effects of indomethacin therapy. PATIENTS: 33 neonates with a mean gestational age of 28.5 weeks who received indomethacin for treatment of a symptomatic PDA were included in a prospective randomized controlled clinical study. METHOD: 15 patients were treated with indomethacin alone (control group), 18 patients with indomethacin and dopamine (study group). Indomethacin was given in a dose of 0.2 mg/kg/dose intravenously, all patients received three doses with intervall of 12 hours. The dose of dopamine was in all patients 4 micrograms/kg per minute commencing 2 hours prior to the first dose of indomethacin and continuing for 12 hours after the third dose. RESULTS: Indomethacin induced a significant increase in serum creatinin (76.3 mumol/l vs 99.7 mumol/l for the control group, and 70.7 mumol/l vs 93.0 mumol/l for the study group), and weight (1259 g vs 1316 g for the control group, and 1187 g vs 1221 g for the study group). The increase systolic blood pressure (61 mmHg vs 65.7 mmHg) in the study group was significant (p < 0.05) but remained unchanged in the control group. The changes between the study group and the control group were not significant either in serum creatinin, fractional excretion of sodium, or weight gain. The failure rate of ductal closure was not different between the two groups. CONCLUSION: The additional use of dopamine does not reduce the renal side effects of indomethacin.
Resumo:
1. The availability of orally active specific angiotensin receptor antagonists (AT1 antagonists) has opened new therapeutic choices and provided probes to test the specific role of the renin-angiotensin system in the pathogenesis of cardiovascular disease. 2. The data available so far suggest that the antihypertensive efficacy of angiotensin receptor antagonists is comparable to that of angiotensin-converting enzyme (ACE) inhibitors. This provides further evidence that this latter class of drugs exerts its effect mainly through blockade of the renin-angiotensin enzymatic cascade. As expected, the association of a diuretic exerts an equally strong additive effect to the antihypertensive efficacy of both classes of drugs. 3. The most common side effect of ACE inhibitors, dry cough, does not occur with AT1 antagonists, which confirms the long-held view that this untoward effect of the ACE inhibitors is due to renin-angiotensin-independent mechanisms. 4. Long-term studies with morbidity/mortality outcome results are needed, before a definite position can be assigned to this newcomer in the orchestra of modern antihypertensive drugs. Notwithstanding, this new class of agents already represents an exciting new addition to our therapeutic armamentarium.
Resumo:
Signaling cascades initiated by Wnt lipoglycoproteins and their receptors of the Frizzled family regulate many aspects of animal development and physiology. Improper activation of this signaling promotes carcinogenic transformation and metastasis. Development of agents blocking the Wnt-Frizzled signaling is of prime interest for drug discovery. Despite certain progress no such agents are as yet brought to the market or even to clinical trials. One reason for these delays might be the use of suboptimal readout assays. In this article we overview existing and developing assay platforms to screen for Wnt-Frizzled antagonists. Among those, G protein-activating assays built on the emerging GPCR properties of Frizzleds are highlighted.
Resumo:
The prevalence of obesity has markedly increased over the past few decades. Exploration of how hunger and satiety signals influence the reward system can help us understand non-homeostatic feeding. Insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce long-term depression (LTD) of mouse excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high-fat meal, which elevates endogenous insulin, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior in mice and conditioned place preference for food in rats. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces anticipatory activity and preference for food-related cues.
Resumo:
This second section of the first ECCO pathogenesis workshop on anti-TNF therapy failures in inflammatory bowel diseases addresses the biological roles of TNFα and the effects and mechanisms of action of TNFα antagonists. Mechanisms underlying their failure, including induction of TNF-independent inflammatory pathways and phenomena of paradoxical inflammation are discussed.
Resumo:
Acute blockade of the renin-angiotensin system with the parenterally active angiotensin II antagonist saralasin has been shown to effectively lower blood pressure in a large fraction of patients with essential hypertension and to improve hemodynamics in some patients with congestive heart failure. It is now possible to antagonize chronically angiotensin II at its receptor using the non-peptide angiotensin II inhibitor losartan (DuP 753, MK 954). When administered by mouth, this compound induces a dose-dependent inhibition of the pressor response to exogenous angiotensin II. This effect is closely related to circulating levels of the active metabolite E3174. Preliminary studies performed in hypertensive patients suggest that losartan has a blood pressure lowering action equivalent to that of an ACE inhibitor. Whether this compound will compare favorably with ACE inhibitors requires however further investigation.
Resumo:
The discovery in 1988 of endothelin, the most potent human endogenous vasoconstrictor, has opened the race to the discovery of a new weapon against arterial hypertension. The development of the endothelin receptors antagonists (ERAs) and the demonstration of their efficacy in preclinical models initially raised a wave of enthusiasm, which was however tempered due to their unfavorable side effect profile. In this article we will review the phases of the development ERAs, and their current and future place as therapeutic tool against arterial hypertension.
Resumo:
Vitamin K antagonists (VKAs) are prescribed worldwide and remain the oral anticoagulant of choice. These drugs are characterized by a narrow therapeutic index and a large inter- and intra-individual variability. P-glycoprotein could contribute to this variability. The aim of this study was to investigate the involvement of P-gp in the transport of acenocoumarol, phenprocoumon and warfarin using an in vitro Caco-2 cell monolayer model. These results were compared with those obtained with rivaroxaban, a new oral anticoagulant known to be a P-gp substrate. The transport of these four drugs was assessed at pH conditions 6.8/7.4 in the presence or absence of the P-gp inhibitor cyclosporine A (10 μM) and the more potent and specific P-gp inhibitor valspodar (5 μM). Analytical quantification was performed by LC/MS. With an efflux ratio of 1.7 and a significant decrease in the efflux (Papp B-A), in the presence of P-gp inhibitors at a concentration of 50 μM, acenocoumarol can be considered as a weak P-gp substrate. Concerning phenprocoumon, the results suggest that this molecule is a poor P-gp substrate. The P-gp inhibitors did not affect significantly the transport of warfarin. The efflux of rivaroxaban was strongly inhibited by the two P-gp inhibitors. In conclusion, none of the three VKAs tested are strong P-gp substrates. However, acenocoumarol can be considered as a weak P-gp substrate and phenprocoumon as a poor P-gp substrate.