180 resultados para Compact subsets
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
Neuroblastoma (NB) is a neural crest-derived childhood tumor characterized by a remarkable phenotypic diversity, ranging from spontaneous regression to fatal metastatic disease. Although the cancer stem cell (CSC) model provides a trail to characterize the cells responsible for tumor onset, the NB tumor-initiating cell (TIC) has not been identified. In this study, the relevance of the CSC model in NB was investigated by taking advantage of typical functional stem cell characteristics. A predictive association was established between self-renewal, as assessed by serial sphere formation, and clinical aggressiveness in primary tumors. Moreover, cell subsets gradually selected during serial sphere culture harbored increased in vivo tumorigenicity, only highlighted in an orthotopic microenvironment. A microarray time course analysis of serial spheres passages from metastatic cells allowed us to specifically "profile" the NB stem cell-like phenotype and to identify CD133, ABC transporter, and WNT and NOTCH genes as spheres markers. On the basis of combined sphere markers expression, at least two distinct tumorigenic cell subpopulations were identified, also shown to preexist in primary NB. However, sphere markers-mediated cell sorting of parental tumor failed to recapitulate the TIC phenotype in the orthotopic model, highlighting the complexity of the CSC model. Our data support the NB stem-like cells as a dynamic and heterogeneous cell population strongly dependent on microenvironmental signals and add novel candidate genes as potential therapeutic targets in the control of high-risk NB.
Resumo:
Previous work has shown that aggregate cultures prepared from fetal rat telencephalon and grown in a chemically defined medium offer a useful model to study developmental processes such as myelin synthesis. Since compact myelin is formed in these cultures, we investigated the possibility to use this culture system to study demyelinating mechanisms. In particular, we examined the effect of a monoclonal antibody (8-18C5) directed against the myelin/oligodendrocyte glycoprotein (MOG). We found that addition of anti-MOG antibodies and complement to aggregate cultures led to a highly significant decrease in myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) specific activity. These results indicate that, in our culture system, anti-MOG antibodies have a strong demyelinating effect.
Resumo:
Novel cancer vaccines are capableto efficiently induce and boost humantumor antigen specific T-cells. However,the properties of these CD8T-cells are only partially characterized.For in depth investigation ofT-cells following Melan-A/MART-1peptide vaccination in melanoma patients,we conducted a detailed prospectivestudy at the single cell level.We first sorted individual human naiveand effector CD8 T-cells from peripheralblood by flow cytometry, andtested a modified RT-PCR protocolincluding a global amplification ofexpressed mRNAs to obtain sufficientcDNAfromsingle cells.We successfullydetected the expression ofseveral specific genes of interest evendown to 106-fold dilution (equivalentto 10-5 cell). We then analyzed tumor-specific effector memory (EM)CD8T-cell subpopulations ex vivo, assingle cells from vaccinated melanomapatients. To elucidate the hallmarksof effective immunity the genesignatures were defined by a panel ofgenes related to effector functions(e.g. IFN-, granzyme B, perforin),and individual clonotypes were identifiedaccording to the expression ofdistinct T-cell receptors (TCR). Usingthis novel single cell analysis approach,we observed that T-cell differentiationis clonotype dependent,with a progressive restriction in TCRBV clonotype diversity from EMCD28pos to EMCD28neg subsets. However,the effector function gene imprintingis clonotype-independent,but dependent on differentiation,since it correlates with the subset oforigin (EMCD28pos or EMCD28neg). We also conducted a detailedcomparative analysis after vaccinationwith natural vs. analog Melan-Apeptide. We found that the peptideused for vaccination determines thefunctional outcome of individualT-cell clonotypes, with native peptideinducing more potent effector functions.Yet, selective clonotypic expansionwith differentiation was preservedregardless of the peptide usedfor vaccination. In summary, the exvivo single cell RT-PCR approach ishighly sensitive and efficient, andrepresents a reliable and powerfultool to refine our current view of molecularprocesses taking place duringT-cell differentiation.
Resumo:
In addition to being instrumental to the protection of mucosal epithelia, secretory IgA (SIgA) adheres to and is transported by intestinal Peyer's patch (PP) M cells. The possible functional reason for this transport is unknown. We have thus examined in mice the outcome of SIgA delivered from the intestinal lumen to the cells present in the underlying organized mucosa-associated lymphoreticular tissue. We show selective association of SIgA with dendritic cells and CD4(+) T and B lymphocytes recovered from PP in vitro. In vivo, exogenously delivered SIgA is able to enter into multiple PP lining the intestine. In PP, SIgA associates with and is internalized by dendritic cells in the subepithelial dome region, whereas the interaction with CD4(+) T cells is limited to surface binding. Interaction between cells and SIgA is mediated by the IgA moiety and occurs for polymeric and monomeric molecular forms. Thus, although immune exclusion represents the main function of SIgA, transport of the Ab by M cells might promote Ag sampling under neutralizing conditions essential to the homeostasis of mucosal surfaces.
Resumo:
Prognosis of early breast cancer patients is significantly improved with the use of adjuvant therapies. Various guidelines have been proposed to select patients who will derive the most benefit from such treatments. However, classifications have limited usefulness in subsets of patients such as those with node negative breast cancer. The 2007 St. Paul de Vence Clinical Practice Recommendations proposed to consider adjuvant therapy in accordance with the 10-year relapse-free survival reduction estimated by Adjuvant! Online. However, many limitations remain regarding the use of Adjuvant! Online. Among them, adverse prognostic and/or predictive factors such as vascular invasion, mitotic activity, progesterone receptor negativity, and HER-2 expression are not incorporated in the routine clinical decision process. Our group has therefore issued guidelines based on the consideration of both Adjuvant! Online calculations and the prognostic and/or predictive effects of these markers. In addition, web-accessible comprehensive tables summarizing these recommendations are provided.
Resumo:
TLR are evolutionarily conserved molecules that play a key role in the initiation of innate antimicrobial immune responses. Through their influence on dendritic cell maturation, these receptors are also thought to indirectly shape the adaptive immune response. However, no data are currently available regarding both TLR expression and function in human CD8+ T cell subsets. We report that a subpopulation of CD8+ T cells, i.e., effector, but neither naive nor central memory cells, constitutively expresses TLR3. Moreover, the ligation of the receptor by a specific agonist in TLR3-expressing CD8+ T cells increased IFN-gamma secretion induced by TCR-dependent and -independent stimulation, without affecting proliferation or specific cytolytic activity. These results thereby suggest that TLR3 ligands can not only indirectly influence the adaptive immune response through modulation of dendritic cell activation, but also directly increase IFN-gamma production by Ag-specific CD8+ T cells. Altogether, the present work might open new perspectives for the use of TLR ligands as adjuvants for immunotherapy.
Resumo:
Intraoperative imaging, in particular intraoperative MRI, is a developing area in neurosurgery and its role is currently being evaluated. Its role in epilepsy surgery has not been defined yet and its use has been limited. In our experience with a compact and mobile low-field intraoperative MRI system, a few epilepsy surgeries have been performed using this technique. As the integration of imaging and functional data plays an important role in the planning of epilepsy surgery, intraoperative verification of the surgical result may be highly valuable. Therefore, teams that have access to intraoperative MRI should be encouraged to use this technique prospectively to evaluate its current relevance in epilepsy surgery.
Resumo:
La reconversion des friches industrielles des secteurs de gare est prometteuse dans l'optique d'un développement urbain dense alternatif à l'étalement. Elles constituent en effet une réserve foncière centrale et bien desservie par les transports publics. La densification de ces terrains stratégiques ne pourra cependant freiner l'étalement urbain qu'à condition d'offrir un cadre de vie attractif pour l'habitat. Notre hypothèse est que l'engagement des pouvoirs publics est déterminant pour assurer cette densification qualifiée. Brown fields regeneration in railway station areas is particularly promising in the perspective of a compact urban development alternative to sprawl. They indeed constitute a central land stock which is well connected to public transportation networks. However, the densification of these strategic lands will make it possible to moderate urban sprawl only by providing an attractive environment for residential activities. Our hypothesis is that public authorities involvement is decisive to ensure such a qualified densification. Die Umnutzung von Industriebrachen in Bahnhofsarealen scheint viel versprechend im Hinblick auf eine Stadtentwicklung nach innen als Alternative zur Ausbreitung. Zentralgelegen, stellen diese ungenutzten Flächen eine strategische Bodenreserve dar, welche gut an das öffentliche Verkehrsmittelnetz angeschlossen ist. Ihre Verdichtung kann jedoch die Stadtausbreitung nur eindämmen unter der Bedingung, einen attraktiven Lebens- und Wohnraum zu bieten. Unsere Hypothese lautet, dass das Ausmass des Engagements der öffentlichen Hand bestimmend ist um diese qualitative Verdichtung sicherzustellen.
Resumo:
Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.
Resumo:
The STEP HIV vaccine trial, which evaluated a replication-defective adenovirus type 5 (Ad5) vector vaccine, was recently stopped. The reasons for this included lack of efficacy of the vaccine and a twofold increase in the incidence of HIV acquisition among vaccinated recipients with increased Ad5-neutralizing antibody titers compared with placebo recipients. To model the events that might be occurring in vivo, the effect on dendritic cells (DCs) of Ad5 vector alone or treated with neutralizing antiserum (Ad5 immune complexes [IC]) was compared. Ad5 IC induced more notable DC maturation, as indicated by increased CD86 expression, decreased endocytosis, and production of tumor necrosis factor and type I interferons. We found that DC stimulation by Ad5 IC was mediated by the Fcgamma receptor IIa and Toll-like receptor 9 interactions. DCs treated with Ad5 IC also induced significantly higher stimulation of Ad5-specific CD8 T cells equipped with cytolytic machinery. In contrast to Ad5 vectors alone, Ad5 IC caused significantly enhanced HIV infection in DC-T cell cocultures. The present results indicate that Ad5 IC activates a DC-T cell axis that, together with the possible persistence of the Ad5 vaccine in seropositive individuals, may set up a permissive environment for HIV-1 infection, which could account for the increased acquisition of HIV-1 infection among Ad5 seropositive vaccine recipients.
Resumo:
Dendritic cells (DCs) are professional APCs that have a role in the initiation of adaptive immune responses and tolerance. Among the tolerogenic mechanisms, the expression of the enzyme IDO1 represents an effective tool to generate T regulatory cells. In humans, different DC subsets express IDO1, but less is known about the IDO1-related enzyme IDO2. In this study, we found a different pattern of expression and regulation between IDO1 and IDO2 in human circulating DCs. At the protein level, IDO1 is expressed only in circulating myeloid DCs (mDCs) and is modulated by PGE2, whereas IDO2 is expressed in both mDCs and plasmacytoid DCs and is not modulated by PGE2. In healthy subjects, IDO1 expression requires the presence of PGE2 and needs continuous transcription and translation, whereas IDO2 expression is constitutive, independent from suppressor of cytokine signaling 3 activity. Conversely, in patients suffering from inflammatory arthritis, circulating DCs express both IDO1 and IDO2. At the functional level, both mDCs and plasmacytoid DCs generate T regulatory cells through an IDO1/IDO2-dependent mechanism. We conclude that, in humans, whereas IDO1 provides an additional mechanism of tolerance induced by proinflammatory mediators, IDO2 is stably expressed in steady-state conditions and may contribute to the homeostatic tolerogenic capacity of DCs.
Resumo:
NK1.1+ T cells are an unusual subset of TCR alpha beta cells distinguished by their highly restricted V beta repertoire and predominant usage of an invariant V alpha 14-J alpha 281 chain. To assess whether a directed rearrangement mechanism could be responsible for this invariant alpha chain, we have analyzed V alpha 14 rearrangements by polymerase chain reaction and Southern blot in a panel of cloned T-T hybrids derived from thymic NK1.1+ T cells. As expected a high proportion (17/20) of the hybrids had rearranged V alpha 14 to J alpha 281. However, V alpha 14-J alpha 281 rearrangements always occurred on only one chromosome and were accompanied by other V alpha-J alpha rearrangements (not involving V alpha 14) on the homologous chromosome. These data argue that rigorous ligand selection rather than directed rearrangement is responsible for the high frequency of V alpha 14-J alpha 281 rearrangements in NK1.1+ T cells.
Resumo:
The authors devised a cytotoxic assay based on cytofluorometric analysis of target surface markers in order to compare lysis exerted in vitro by cytotoxic T lymphocytes (CTLs) on different cell subsets in the context of a single lymphoid target cell population. Using this assay, the authors evaluated when oncorna virus-infected lymphocytes become a suitable target for virus-specific T cell effectors. A lymphocyte population from Moloney-murine leukaemia virus (M-MuLV)-infected (carrier) mice, in which the proliferation of selective V beta T-cell receptor (TCR) families was induced in response to Mlsa encoded antigens, was utilized as a target. The authors observed that a virus-specific T cell clone exerted lytic activity preferentially against activated cell subsets. Moreover, virus-specific CTLs generated in mixed leucocyte tumour cell cultures (MLTC) were also able to impair the concomitant anti-Mlsa response of lymphocytes from M-MuLV carrier mice. It was found that the proliferative status of oncorna virus-infected target cells played an important role in limiting the in vitro efficacy of the immune response, and it is speculated that this phenomenon might represent an in vivo escape mechanism from immunosurveillance.
Resumo:
Commitment of the alpha beta and gamma delta T cell lineages within the thymus has been studied in T cell receptor (TCR)-transgenic and TCR mutant murine strains. TCR gamma delta-transgenic or TCR beta knockout mice, both of which are unable to generate TCR alpha beta-positive T cells, develop phenotypically alpha beta-like thymocytes in significant proportions. We provide evidence that in the absence of functional TCR beta protein, the gamma delta TCR can promote the development of alpha beta-like thymocytes, which, however, do not expand significantly and do not mature into gamma delta T cells. These results show that commitment to the alpha beta lineage can be determined independently of the isotype of the TCR, and suggest that alpha beta versus gamma delta T cell lineage commitment is principally regulated by mechanisms distinct from TCR-mediated selection. To accommodate our data and those reported previously on the effect of TCR gamma and delta gene rearrangements on alpha beta T cell development, we propose a model in which lineage commitment occurs independently of TCR gene rearrangement.