88 resultados para 2 splice variants
Resumo:
BACKGROUND: The recurrent ~600 kb 16p11.2 BP4-BP5 deletion is among the most frequent known genetic aetiologies of autism spectrum disorder (ASD) and related neurodevelopmental disorders. OBJECTIVE: To define the medical, neuropsychological, and behavioural phenotypes in carriers of this deletion. METHODS: We collected clinical data on 285 deletion carriers and performed detailed evaluations on 72 carriers and 68 intrafamilial non-carrier controls. RESULTS: When compared to intrafamilial controls, full scale intelligence quotient (FSIQ) is two standard deviations lower in carriers, and there is no difference between carriers referred for neurodevelopmental disorders and carriers identified through cascade family testing. Verbal IQ (mean 74) is lower than non-verbal IQ (mean 83) and a majority of carriers require speech therapy. Over 80% of individuals exhibit psychiatric disorders including ASD, which is present in 15% of the paediatric carriers. Increase in head circumference (HC) during infancy is similar to the HC and brain growth patterns observed in idiopathic ASD. Obesity, a major comorbidity present in 50% of the carriers by the age of 7 years, does not correlate with FSIQ or any behavioural trait. Seizures are present in 24% of carriers and occur independently of other symptoms. Malformations are infrequently found, confirming only a few of the previously reported associations. CONCLUSIONS: The 16p11.2 deletion impacts in a quantitative and independent manner FSIQ, behaviour and body mass index, possibly through direct influences on neural circuitry. Although non-specific, these features are clinically significant and reproducible. Lastly, this study demonstrates the necessity of studying large patient cohorts ascertained through multiple methods to characterise the clinical consequences of rare variants involved in common diseases.
Resumo:
Obesity is of global health concern. There are well-described inverse relationships between female pubertal timing and obesity. Recent genome-wide association studies of age at menarche identified several obesity-related variants. Using data from the ReproGen Consortium, we employed meta-analytical techniques to estimate the associations of 95 a priori and recently identified obesity-related (body mass index (weight (kg)/height (m)(2)), waist circumference, and waist:hip ratio) single-nucleotide polymorphisms (SNPs) with age at menarche in 92,116 women of European descent from 38 studies (1970-2010), in order to estimate associations between genetic variants associated with central or overall adiposity and pubertal timing in girls. Investigators in each study performed a separate analysis of associations between the selected SNPs and age at menarche (ages 9-17 years) using linear regression models and adjusting for birth year, site (as appropriate), and population stratification. Heterogeneity of effect-measure estimates was investigated using meta-regression. Six novel associations of body mass index loci with age at menarche were identified, and 11 adiposity loci previously reported to be associated with age at menarche were confirmed, but none of the central adiposity variants individually showed significant associations. These findings suggest complex genetic relationships between menarche and overall obesity, and to a lesser extent central obesity, in normal processes of growth and development.
Resumo:
A method allowing a clear separation of the different variants of desialylated alpha 1-acid glycoprotein (orosomucoid) has been developed using isoelectric focusing in immobilized pH gradients, supplemented with 8 M urea and 2% v/v 2-mercaptoethanol. Immunoblotting with two antibody-steps afforded high sensitivity and permitted the detection of about 700 pg of alpha 1-acid glycoprotein in a 20 microL plasma sample diluted 1:28 672. A one year old bloodstrain, kept at room temperature, could easily be phenotyped.
Resumo:
To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
Resumo:
The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are insulinotropic factors released from the small intestine to the blood stream in response to oral glucose ingestion. The insulinotropic effect of GLP-1 is maintained in patients with Type II (non-insulin-dependent) diabetes mellitus, whereas, for unknown reasons, the effect of GIP is diminished or lacking. We defined the exon-intron boundaries of the human GIP receptor, made a mutational analysis of the gene and identified two amino acid substitutions, A207 V and E354Q. In an association study of 227 Caucasian Type II diabetic patients and 224 matched glucose tolerant control subjects, the allelic frequency of the A207 V polymorphism was 1.1% in Type II diabetic patients and 0.7% in control subjects (p = 0.48), whereas the allelic frequency of the codon 354 polymorphism was 24.9% in Type II diabetic patients versus 23.2% in control subjects. Interestingly, the glucose tolerant subjects (6% of the population) who were homozygous for the codon 354 variant had on average a 14% decrease in fasting serum C-peptide concentration (p = 0.01) and an 11% decrease in the same variable 30 min after an oral glucose load (p = 0.03) compared with subjects with the wild-type receptor. Investigation of the function of the two GIP receptor variants in Chinese hamster fibroblasts showed, however, that the GIP-induced cAMP formation and the binding of GIP to cells expressing the variant receptors were not different from the findings in cells expressing the wildtype GIP receptor. In conclusion, amino acid variants in the GIP receptor are not associated with random Type II diabetes in patients of Danish Caucasian origin or with altered GIP binding and GIP-induced cAMP production when stably transfected in Chinese hamster fibroblasts. The finding of an association between homozygosity for the codon 354 variant and reduced fasting and post oral glucose tolerance test (OGTT) serum C-peptide concentrations, however, calls for further investigations and could suggest that GIP even in the fasting state regulates the beta-cell secretory response.
Resumo:
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Resumo:
The plasma concentrations of alpha 1-acid glycoprotein (AAG), albumin, triglycerides, cholesterol, and total proteins, as well as the plasma binding of racemic, d-methadone, and l-methadone were measured in 45 healthy subjects. The AAG phenotypes and the concentrations of AAG variants were also determined. The measured free fractions for racemic, d-methadone, and l-methadone were, respectively, 12.7% +/- 3.3%, 10.0% +/- 2.9%, and 14.2% +/- 3.2% (mean +/- SD). A significant correlation was obtained between the binding ratio (B/F) for dl-methadone and the total AAG concentration (r = 0.724; p less than 0.001). A multiple stepwise regression analysis showed that AAG was the main explanatory variable for the binding of the racemate. When concentrations of AAG variants were considered, a significant correlation was obtained between the binding ratio of dl-methadone and orosomucoid2 A concentration (r = 0.715; p less than 0.001), a weak correlation between dl-methadone and orosomucoid1 S concentration (r = 0.494; p less than 0.001), and no correlation between dl-methadone and orosomucoid1 F1 concentration (r = 0.049; not significant). Similar findings were obtained with the enantiomers. This study shows the importance of considering not only total AAG but also concentrations of AAG variants when measuring the binding of methadone and possibly of other drugs in plasma.
Resumo:
Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10(-33); LPA:p<10(-19); 1p13.3:p<10(-17)) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10(-7)). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06-1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity202;=202;0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and clarified the literature with regard to many previously suggested genes.
Resumo:
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P< or =5x10(-8)). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P< or =0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2x10(-19) for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9x10(-8), n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5x10(-6), n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2x10(-3), n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.
Evaluation of two long synthetic merozoite surface protein 2 peptides as malaria vaccine candidates.
Resumo:
Merozoite surface protein 2 (MSP2) is a promising vaccine candidate against Plasmodium falciparum blood stages. A recombinant 3D7 form of MSP2 was a subunit of Combination B, a blood stage vaccine tested in the field in Papua New Guinea. A selective effect in favour of the allelic family not represented by the vaccine argued for a MSP2 vaccine consisting of both dimorphic variants. An alternative approach to recombinant manufacture of vaccines is the production of long synthetic peptides (LSP). LSP exceeding a length of well over 100 amino acids can now be routinely synthesized. Synthetic production of vaccine antigens cuts the often time-consuming steps of protein expression and purification short. This considerably reduces the time for a candidate to reach the phase of clinical trials. Here we present the evaluation of two long synthetic peptides representing both allelic families of MSP2 as potential vaccine candidates. The constructs were well recognized by human immune sera from different locations and different age groups. Furthermore, peptide-specific antibodies in human immune sera were associated with protection from clinical malaria. The synthetic fragments share major antigenic properties with native MSP2. Immunization of mice with these antigens yielded high titre antibody responses and monoclonal antibodies recognized parasite-derived MSP2. Our results justify taking these candidate poly-peptides into further vaccine development.
Resumo:
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n202;=202;550 independent loci) were genotyped in a replication cohort and 122 SNPs (n202;=202;98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P202;=202;7.0×10(-9), OR (95% CI)202;=202;0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
Resumo:
Soluble peptide/MHC-class-I (pMHC) multimers have recently emerged as unique reagents for the study of specific interactions between the pMHC complex and the TCR. Here, we assessed the relative binding efficiency of a panel of multimers incorporating single-alanine-substituted variants of the tumor-antigen-derived peptide MAGE-A10(254-262) to specific CTL clones displaying different functional avidity. For each individual clone, the efficiency of binding of multimers incorporating MAGE-A10 peptide variants was, in most cases, in good although not linear correlation with the avidity of recognition of the corresponding variant. In addition, we observed two types of discrepancies between efficiency of recognition and multimer binding. First, for some peptide variants, efficient multimer binding was detected in the absence of measurable effector functions. Some of these peptide variants displayed antagonist activity. Second, when comparing different clones we found clear discrepancies between the dose of peptide required to obtain half-maximal lysis in CTL assays and the binding efficiency of the corresponding multimers. These discrepancies, however, were resolved when the differential stability of the TCR/pMHC complexes was determined. For individual clones, decreased recognition correlated with increased TCR/pMHC off-rate. TCR/pMHC complexes formed by antagonist ligands displayed off-rates faster than those of TCR/pMHC complexes formed with weak agonists. In addition, when comparing different clones, the efficiency of multimer staining correlated better with relative multimer off-rates than with half-maximal lysis values. Altogether, the data presented here reconcile and extend our previous results on the impact of the kinetics of interaction of TCR with pMHC complexes on multimer binding and underline the crucial role of TCR/pMHC off-rates for the functional outcome of such interactions.
Resumo:
Polymorphisms in IL28B were shown to affect clearance of hepatitis C virus (HCV) infection in genome-wide association (GWA) studies. Only a fraction of patients with chronic HCV infection develop liver fibrosis, a process that might also be affected by genetic factors. We performed a 2-stage GWA study of liver fibrosis progression related to HCV infection. We studied well-characterized HCV-infected patients of European descent who underwent liver biopsies before treatment. We defined various liver fibrosis phenotypes on the basis of METAVIR scores, with and without taking the duration of HCV infection into account. Our GWA analyses were conducted on a filtered primary cohort of 1161 patients using 780,650 single nucleotide polymorphisms (SNPs). We genotyped 96 SNPs with P values <5 × 10(-5) from an independent replication cohort of 962 patients. We then assessed the most interesting replicated SNPs using DNA samples collected from 219 patients who participated in separate GWA studies of HCV clearance. In the combined cohort of 2342 HCV-infected patients, the SNPs rs16851720 (in the total sample) and rs4374383 (in patients who received blood transfusions) were associated with fibrosis progression (P(combined) = 8.9 × 10(-9) and 1.1 × 10(-9), respectively). The SNP rs16851720 is located within RNF7, which encodes an antioxidant that protects against apoptosis. The SNP rs4374383, together with another replicated SNP, rs9380516 (P(combined) = 5.4 × 10(-7)), were linked to the functionally related genes MERTK and TULP1, which encode factors involved in phagocytosis of apoptotic cells by macrophages. Our GWA study identified several susceptibility loci for HCV-induced liver fibrosis; these were linked to genes that regulate apoptosis. Apoptotic control might therefore be involved in liver fibrosis.
Resumo:
Complex and variable morphological phenotypes pose a major challenge to the histopathological classification of neuroepithelial tumors. This applies in particular for low-grade gliomas and glio-neuronal tumors. Recently, we and others have identified microtubule-associated protein-2 (MAP2) as an immunohistochemical marker expressed in the majority of glial tumors. Characteristic cell morphologies can be recognized by MAP2 immunoreactivity in different glioma entities, i.e., process sparse oligodendroglial versus densely ramified astrocytic elements. Here, we describe MAP2-immunoreactivity patterns in a large series of various neuroepithelial tumors and related neoplasms (n = 960). Immunohistochemical analysis led to the following conclusions: (1) specific pattern of MAP2-positive tumor cells can be identified in 95% of glial neoplasms; (2) ependymal tumors do not express MAP2 in their rosette-forming cell component; (3) tumors of the pineal gland as well as malignant embryonic tumors are also characterized by abundant MAP2 immunoreactivity; (4) virtually no MAP2 expression can be observed in the neoplastic glial component of glio-neuronal tumors, i.e. gangliogliomas; (5) malignant glial tumor variants (WHO grade III or IV) exhibit different and less specific MAP2 staining patterns compared to their benign counterparts (WHO grade I or II); (6) with the exception of melanomas and small cell lung cancers, MAP2 expression is very rare in metastatic and non-neuroepithelial tumors; (7) glial MAP2 expression was not detected in 56 non-neoplastic lesions. These data point towards MAP2 as valuable diagnostic tool for pattern recognition and differential diagnosis of low-grade neuroepithelial tumors.