531 resultados para Airborne imaging spectrometry
Resumo:
Current therapeutic strategies against glioblastoma (GBM) have failed to prevent disease progression and recurrence effectively. The part played by molecular imaging (MI) in the development of novel therapies has gained increasing traction in recent years. For the first time, using expertise from an integrated multidisciplinary group of authors, herein we present a comprehensive evaluation of state-of-the-art GBM imaging and explore how advances facilitate the emergence of new treatment options. We propose a novel next-generation treatment paradigm based on the targeting of multiple hallmarks of cancer evolution that will heavily rely on MI.
Resumo:
A sensitive method was developed for quantifying a wide range of cannabinoids in oral fluid (OF) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). These cannabinoids include a dagger(9)-tetrahydrocannabinol (THC), 11-hydroxy-a dagger(9)-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-a dagger(9)-tetrahydrocannabinol (THCCOOH), cannabinol (CBN), cannabidiol (CBD), a dagger(9)-tetrahydrocannabinolic acid A (THC-A), 11-nor-9-carboxy-a dagger(9)-tetrahydrocannabinol glucuronide (THCCOOH-gluc), and a dagger(9)-tetrahydrocannabinol glucuronide (THC-gluc). Samples were collected using a Quantisal (TM) device. The advantages of performing a liquid-liquid extraction (LLE) of KCl-saturated OF using heptane/ethyl acetate versus a solid-phase extraction (SPE) using HLB copolymer columns were determined. Chromatographic separation was achieved in 11.5 min on a Kinetex (TM) column packed with 2.6-mu m core-shell particles. Both positive (THC, 11-OH-THC, CBN, and CBD) and negative (THCCOOH, THC-gluc, THCCOOH-gluc, and THC-A) electrospray ionization modes were employed with multiple reaction monitoring using a high-end AB Sciex API 5000 (TM) triple quadrupole LC-MS/MS system. Unlike SPE, LLE failed to extract THC-gluc and THCCOOH-gluc. However, the LLE method was more sensitive for the detection of THCCOOH than the SPE method, wherein the limit of detection (LOD) and limit of quantification (LOQ) decreased from 100 to 50 pg/ml and from 500 to 80 pg/ml, respectively. The two extraction methods were successfully applied to OF samples collected from volunteers before and after they smoked a homemade cannabis joint. High levels of THC were measured soon after smoking, in addition to significant amounts of THC-A. Other cannabinoids were found in low concentrations. Glucuronide conjugate levels were lower than the method's LOD for most samples. Incubation studies suggest that glucuronides could be enzymatically degraded by glucuronidase prior to OF collection
Resumo:
Previous studies have demonstrated that poultry-house workers are exposed to very high levels of organic dust and consequently have an increased prevalence of adverse respiratory symptoms. However, the influence of the age of broilers, on bioaerosol concentrations has not been investigated. To evaluate the evolution of bioaerosol concentration during the fattening period, bioaerosol parameters (inhalable dust, endotoxin and bacteria) were measured in 12 poultry confinement buildings in Switzerland, at 3 different stages of the birds' growth; Samples of air taken from within the breathing zones of individual poultry-house employees as they caught the chickens ready to be transported for slaughter, were also analysed. Quantitative PCR (Q-PCR) was used to assess the quantity of total airborne bacteria and total airborne Staphylococcus species. Bioaerosol levels increased significantly during the fattening period of the chickens. During the task of catching mature birds, the mean inhalable dust concentration for a worker was 31 ± 4.7 mg/m3, and endotoxin concentration was 11'080 ± 3436 UE/m3 air, more than ten-fold higher than the Swiss occupational recommended value (1000 UE/m3). The mean exposure level of bird catchers to total bacteria and Staphylococcus species measured by Q-PCR is also very high, respectively reaching values of 72 (± 11) x107 cells/m3 air and 70 (± 16) x106/m3 air. It was concluded that in the absence of wearing protective breathing apparatus, chicken catchers in Switzerland risk exposure beyond recommended limits for all measured bioaerosol parameters. Moreover, the use of Q-PCR to estimate total and specific numbers of airborne bacteria is a promising tool for evaluating any modifications intended to improve the safety of current working practices.
Resumo:
The prognostic significance of magnetic resonance imaging (MRI) in the neonatal period was studied prospectively in 43 term infants with perinatal asphyxia. MRI was performed between 1 and 14 days after birth with a high field system (2.35 Tesla). Neurodevelopmental outcome was assessed by a standardized neurological examination and the Griffiths developmental test at a mean age of 18.9 months. The predictive value of the various MRI patterns was as follows: Severe diffuse brain injury (pattern AII+III; n = 7) and lesions of thalamus and basal ganglia (pattern C; n = 5) were strongly associated with poor outcome and greatly reduced head growth. Mild diffuse brain injury (pattern AI; n = 7), parasagittal lesions (B; n = 7), periventricular hyperintensity (D; n = 2), focal brain necrosis and hemorrhage (E; n = 3) and periventricular hypointense stripes (on T2-weighted images; F; n = 3) led in one third of the infants to minor neurological disturbances and mild developmental delay. Infants with normal MRI findings (G; n = 9) developed normally with the exception of one infant who was mildly delayed at 18 months. The results indicate that MRI examination during the first two weeks of life is of prognostic significance in term infants suffering from perinatal asphyxia. Severe hypoxic-ischemic brain lesions were associated highly significantly with poor neuro-developmental outcome, whereas infants with inconspicuous MRI developed normally.
Resumo:
The vascular properties of large vessels in the obese have not been adequately studied. We used cardiovascular magnetic resonance imaging to quantify the cross-sectional area and elastic properties of the ascending thoracic and abdominal aorta in 21 clinically healthy obese young adult men and 25 men who were age-matched lean controls. Obese subjects had greater maximal cross-sectional area of the ascending thoracic aorta (984 +/- 252 vs 786 +/- 109 mm(2), p <0.01) and of the abdominal aorta (415 +/- 71 vs 374 +/- 51 mm(2), p <0.05). When indexed for height the differences persisted, but when indexed for body surface area, a significant difference between groups was found only for the maximal abdominal aortic cross-sectional area. The obese subjects also had decreased abdominal aortic elasticity, characterized by 24% lower compliance (0.0017 +/- 0.0004 vs 0.0021 +/- 0.0005 mm(2)/kPa/mm, p <0.01), 22% higher stiffness index beta (6.0 +/- 1.5 vs 4.9 +/- 0.7, p <0.005), and 41% greater pressure-strain elastic modulus (72 +/- 25 vs 51 +/- 9, p <0.005). At the ascending thoracic aorta, only the pressure-strain elastic modulus was different between obese and lean subjects (85 +/- 42 vs 65 +/- 26 kPa, respectively; p <0.05), corresponding to a 31% difference-but arterial compliance and stiffness index were not significantly different between groups. In clinically healthy young adult obese men, obesity is associated with increased cross-sectional aortic area and decreased aortic elasticity.
Resumo:
A gas chromatography-mass spectrometry method is presented which allows the simultaneous determination of the plasma concentrations of the selective serotonin reuptake inhibitors citalopram, paroxetine, sertraline, and their pharmacologically active N-demethylated metabolites (desmethylcitalopram, didesmethylcitalopram, and desmethylsertraline) after derivatization with the reagent N-methyl-bis(trifluoroacetamide). No interferences from endogenous compounds are observed following the extraction of plasma samples from six different human subjects. The standard curves are linear over a working range of 10-500 ng/mL for citalopram, 10-300 ng/mL for desmethylcitalopram, 5-60 ng/mL for didesmethylcitalopram, 20-400 ng/mL for sertraline and desmethylsertraline, and 10-200 ng/mL for paroxetine. Recoveries measured at three concentrations range from 81 to 118% for the tertiary amines (citalopram and the internal standard methylmaprotiline), 73 to 95% for the secondary amines (desmethylcitalopram, paroxetine and sertraline), and 39 to 66% for the primary amines (didesmethylcitalopram and desmethylsertraline). Intra- and interday coefficients of variation determined at three concentrations range from 3 to 11% for citalopram and its metabolites, 4 to 15% for paroxetine, and 5 to 13% for sertraline and desmethylsertraline. The limits of quantitation of the method are 2 ng/mL for citalopram and paroxetine, 1 ng/mL for sertraline, and 0.5 ng/mL for desmethylcitalopram, didesmethylcitalopram, and desmethylsertraline. No interferences are noted from 20 other psychotropic drugs. This sensitive and specific method can be used for single-dose pharmacokinetics. It is also useful for therapeutic drug monitoring of these three drugs and could possibly be adapted for the quantitation of the two other selective serotonin reuptake inhibitors on the market, namely fluoxetine and fluvoxamine.
Resumo:
PURPOSE: To improve the traditional Nyquist ghost correction approach in echo planar imaging (EPI) at high fields, via schemes based on the reversal of the EPI readout gradient polarity for every other volume throughout a functional magnetic resonance imaging (fMRI) acquisition train. MATERIALS AND METHODS: An EPI sequence in which the readout gradient was inverted every other volume was implemented on two ultrahigh-field systems. Phantom images and fMRI data were acquired to evaluate ghost intensities and the presence of false-positive blood oxygenation level-dependent (BOLD) signal with and without ghost correction. Three different algorithms for ghost correction of alternating readout EPI were compared. RESULTS: Irrespective of the chosen processing approach, ghosting was significantly reduced (up to 70% lower intensity) in both rat brain images acquired on a 9.4T animal scanner and human brain images acquired at 7T, resulting in a reduction of sources of false-positive activation in fMRI data. CONCLUSION: It is concluded that at high B(0) fields, substantial gains in Nyquist ghost correction of echo planar time series are possible by alternating the readout gradient every other volume.
Resumo:
The screening of testosterone (T) misuse for doping control is based on the urinary steroid profile, including T, its precursors and metabolites. Modifications of individual levels and ratio between those metabolites are indicators of T misuse. In the context of screening analysis, the most discriminant criterion known to date is based on the T glucuronide (TG) to epitestosterone glucuronide (EG) ratio (TG/EG). Following the World Anti-Doping Agency (WADA) recommendations, there is suspicion of T misuse when the ratio reaches 4 or beyond. While this marker remains very sensitive and specific, it suffers from large inter-individual variability, with important influence of enzyme polymorphisms. Moreover, use of low dose or topical administration forms makes the screening of endogenous steroids difficult while the detection window no longer suits the doping habit. As reference limits are estimated on the basis of population studies, which encompass inter-individual and inter-ethnic variability, new strategies including individual threshold monitoring and alternative biomarkers were proposed to detect T misuse. The purpose of this study was to evaluate the potential of ultra-high pressure liquid chromatography (UHPLC) coupled with a new generation high resolution quadrupole time-of-flight mass spectrometer (QTOF-MS) to investigate the steroid metabolism after transdermal and oral T administration. An approach was developed to quantify 12 targeted urinary steroids as direct glucuro- and sulfo-conjugated metabolites, allowing the conservation of the phase II metabolism information, reflecting genetic and environmental influences. The UHPLC-QTOF-MS(E) platform was applied to clinical study samples from 19 healthy male volunteers, having different genotypes for the UGT2B17 enzyme responsible for the glucuroconjugation of T. Based on reference population ranges, none of the traditional markers of T misuse could detect doping after topical administration of T, while the detection window was short after oral TU ingestion. The detection ability of the 12 targeted steroids was thus evaluated by using individual thresholds following both transdermal and oral administration. Other relevant biomarkers and minor metabolites were studied for complementary information to the steroid profile, including sulfoconjugated analytes and hydroxy forms of glucuroconjugated metabolites. While sulfoconjugated steroids may provide helpful screening information for individuals with homozygotous UGT2B17 deletion, hydroxy-glucuroconjugated analytes could enhance the detection window of oral T undecanoate (TU) doping.
Resumo:
The aim of our study was to provide an innovative HS-GC/MS method applicable to the routine determination of butane concentration in forensic toxicology laboratories. The main drawback of the GC/MS methods discussed in literature concerning butane measurement was the absence of a specific butane internal standard necessary to perform quantification. Because no stable isotope of butane is commercially available, it is essential to develop a new approach by an in situ generation of standards. To avoid the manipulation of a stable isotope-labelled gas, we have chosen to generate in situ an internal labelled standard gas (C(4)H(9)D) following the basis of the stoichiometric formation of butane by the reaction of deuterated water (D(2)O) with Grignard reagent butylmagnesium chloride (C(4)H(9)MgCl). This method allows a precise measurement of butane concentration and therefore, a full validation by accuracy profile was presented.
Resumo:
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3-10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.
Resumo:
Three standard radiation qualities (RQA 3, RQA 5 and RQA 9) and two screens, Kodak Lanex Regular and Insight Skeletal, were used to compare the imaging performance and dose requirements of the new Kodak Hyper Speed G and the current Kodak T-MAT G/RA medical x-ray films. The noise equivalent quanta (NEQ) and detective quantum efficiencies (DQE) of the four screen-film combinations were measured at three gross optical densities and compared with the characteristics for the Kodak CR 9000 system with GP (general purpose) and HR (high resolution) phosphor plates. The new Hyper Speed G film has double the intrinsic sensitivity of the T-MAT G/RA film and a higher contrast in the high optical density range for comparable exposure latitude. By providing both high sensitivity and high spatial resolution, the new film significantly improves the compromise between dose and image quality. As expected, the new film has a higher noise level and a lower signal-to-noise ratio than the standard film, although in the high frequency range this is compensated for by a better resolution, giving better DQE results--especially at high optical density. Both screen-film systems outperform the phosphor plates in terms of MTF and DQE for standard imaging conditions (Regular screen at RQA 5 and RQA 9 beam qualities). At low energy (RQA 3), the CR system has a comparable low-frequency DQE to screen-film systems when used with a fine screen at low and middle optical densities, and a superior low-frequency DQE at high optical density.
Resumo:
Contemporary coronary magnetic resonance angiography techniques suffer from signal-to-noise ratio (SNR) constraints. We propose a method to enhance SNR in gradient echo coronary magnetic resonance angiography by using sensitivity encoding (SENSE). While the use of sensitivity encoding to improve SNR seems counterintuitive, it can be exploited by reducing the number of radiofrequency excitations during the acquisition window while lowering the signal readout bandwidth, therefore improving the radiofrequency receive to radiofrequency transmit duty cycle. Under certain conditions, this leads to improved SNR. The use of sensitivity encoding for improved SNR in three-dimensional coronary magnetic resonance angiography is investigated using numerical simulations and an in vitro and an in vivo study. A maximum 55% SNR enhancement for coronary magnetic resonance angiography was found both in vitro and in vivo, which is well consistent with the numerical simulations. This method is most suitable for spoiled gradient echo coronary magnetic resonance angiography in which a high temporal and spatial resolution is required.
Resumo:
Abstract : Matrix metalloproteinases (MMPs) are thought to play a major role in the tumor dissemination process as they degrade all components of the extracellular matrix. However, failure of clinical trials testing broad MMP inhibitors in cancer led to the consensus that a better understanding of the MMP biology was required. Using intravital multiphoton laser scanning microscopy, we developed an in vivo model to observe tumor dissemination and extracellular matrix remodeling in real time. We show that the matrix-modifying hormone relaxin increases tumor associated fibroblast interaction with collagen fibers by inducing integrin beta-1 expression. This causes changes in the collagen network that are mediated by MMP-8 and MT1-MMP. Also, we show that MMP-mediated collagen remodeling in vivo requires a direct contact between stationary tumor associated fibroblasts (TAFs) and collagen fibers. As MMPs are expressed in the tumor and stromal compartment of breast cancers we determined the importance of Membrane-type 1 MMP (MT1-MMP) from each compartment for cancer progression. We find that tumor-MT1-MMP promotes the invasion of the blood vasculature and blood-borne metastasis in vivo by enhancing tumor cell migration and endothelial basement membrane degradation. Interestingly, stromal-MT1-MMP cannot compensate for the lack of tumor-MT1-MMP but promotes peritumor collagen I remodeling. Thus, the function of MT1-MMP is context dependent and we identify the different but complementary roles of tumor and stromal MT1-MMP for tumor dissemination. Finally, we translate our preclinical findings in to human breast cancer samples. We show that tumor-MT1-MMP expression correlates with tumor invasion of the blood vasculature in ER-PR-HER2- breast cancers and that MT1-MMP expression increases with cancer progression. MT1-MMP could thus represent an interesting therapeutic target for the prevention of blood vasculature invasion in these tumors. Resumé : Les matrix metalloproteinases (MMPs) semblent jouer un rôle majeur pour la dissémination tumorale en raison de leur capacité à dégrader l'ensemble des composants de la matrice extracellulaire (MEC). Néanmoins, les résultats décevants des études cliniques testant les inhibiteurs des MMP ont conduit à la notion qu'une compréhension plus précise de la biologie des MMP était requise. Dans ce travail de thèse, nous avons développé un modèle murin qui permet d'observer simultanément la dissémination tumorale ainsi que les modifications de la MEC en temps réel. Nous démontrons que le traitement de tumeurs par l'hormone relaxin augmente l'interaction des fibroblastes tumoraux avec les fibres de collagène via l'intégrine beta-1. Nous montrons que cette interaction favorise et est nécessaire à la dégradation des fibres de collagène par MMP-8 et MT1-MMP. Ensuite, étant donné que les MMPs sont exprimées dans les cellules tumorales et stromales des cancers du sein, nous nous sommes intéressés au rôle de la MMP membranaire type 1 (MT1-MMP) exprimée dans chacun de ces compartiments. Nous démontrons que MT1-MMP dérivant des cellules tumorales favorise leur invasion dans les vaisseaux sanguins par la dégradation de la membrane basale vasculaire. De manière inattendue, nous montrons que l'expression de MT1-MMP par le compartiment stromal ne peut compenser le manque de MT1-MMP dans le compartiment tumoral. Néanmoins, nos résultats prouvent que MT1-MMP dérivant du compartiment stromal est impliqué dans la dégradation de collagène peritumorale. La fonction de la protéine MT1-MMP varie donc selon le compartiment tumoral d'origine. Finalement, nous avons testé nos résultats pré cliniques chez l'humain. Dans des biopsies de cancer du sein nous montrons une corrélation entre l'expression de MT1-MMP dans les cellules tumorales et l'invasion de vaisseaux sanguins par des tumeurs ER-PR-HER2-. MT1-MMP pourrait donc être une cible intéressante pour la prévention de dissémination vasculaire de ces tumeurs
Resumo:
PURPOSE: EOS (EOS imaging S.A, Paris, France) is an x-ray imaging system that uses slot-scanning technology in order to optimize the trade-off between image quality and dose. The goal of this study was to characterize the EOS system in terms of occupational exposure, organ doses to patients as well as image quality for full spine examinations. METHODS: Occupational exposure was determined by measuring the ambient dose equivalents in the radiological room during a standard full spine examination. The patient dosimetry was performed using anthropomorphic phantoms representing an adolescent and a five-year-old child. The organ doses were measured with thermoluminescent detectors and then used to calculate effective doses. Patient exposure with EOS was then compared to dose levels reported for conventional radiological systems. Image quality was assessed in terms of spatial resolution and different noise contributions to evaluate the detector's performances of the system. The spatial-frequency signal transfer efficiency of the imaging system was quantified by the detective quantum efficiency (DQE). RESULTS: The use of a protective apron when the medical staff or parents have to stand near to the cubicle in the radiological room is recommended. The estimated effective dose to patients undergoing a full spine examination with the EOS system was 290μSv for an adult and 200 μSv for a child. MTF and NPS are nonisotropic, with higher values in the scanning direction; they are in addition energy-dependent, but scanning speed independent. The system was shown to be quantum-limited, with a maximum DQE of 13%. The relevance of the DQE for slot-scanning system has been addressed. CONCLUSIONS: As a summary, the estimated effective dose was 290μSv for an adult; the image quality remains comparable to conventional systems.