695 resultados para Expression regulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinoid X Receptors (RXR) were initially identified as nuclear receptors binding with stereo-selectivity the vitamin A derivative 9-cis retinoic acid, although the relevance of this molecule as endogenous activator of RXRs is still elusive. Importantly, within the nuclear receptor superfamily, RXRs occupy a peculiar place, as they are obligatory partners for a number of other nuclear receptors, thus integrating the corresponding signaling pathways. In this chapter, we describe the structural features allowing RXR to form homo- and heterodimers, and the functional consequences of this unique ability. Furthermore, we discuss the importance of studying RXR activity at a genome-wide level in order to comprehensively address the biological implications of their action that is fundamental to understand to what extent RXRs could be exploited as new therapeutic targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jasmonates in plants are cyclic fatty acid-derived regulators structurally similar to prostaglandins in metazoans. These chemicals mediate many of plants' transcriptional responses to wounding and pathogenesis by acting as potent regulators for the expression of numerous frontline immune response genes, including those for defensins and antifungal proteins. Additionally, the pathway is critical for fertility. Ongoing genetic screens and protein-protein interaction assays are identifying components of the canonical jasmonate signaling pathway. A massive molecular machine, based on two multiprotein complexes, SCF(COI1) and the COP9 signalosome (CNS), plays a central role in jasmonate signaling. This machine functions in vivo as a ubiquitin ligase complex, probably targeting regulatory proteins, some of which are expected to be transcriptional repressors. Some defense-related mediators, notably salicylic acid, antagonize jasmonates in controlling the expression of many genes. In Arabidopsis, NONEXPRESSOR OF PR GENES (NPR1) mediates part of this interaction, with another layer of control provided further downstream by the mitogen-activated protein kinase (MAPK) homolog MPK4. Numerous other interpathway connections influence the jasmonate pathway. Insights from Arabidopsis have shown that an allele of the auxin signaling gene AXR1, for example, reduces the sensitivity of plants to jasmonate. APETALA2 (AP2)-domain transcription factors, such as ETHYLENE RESPONSE FACTOR 1 (ERF1), link the jasmonate pathway to the ethylene signaling pathway. As progress in characterizing several new mutants (some of which are hypersensitive to jasmonic acid) augments our understanding of jasmonate signaling, the Connections Map will be updated to include this new information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied the kinetics of RNA synthesis from the vaccinia virus 7,500-molecular-weight gene (7.5K gene) which is regulated by early and late promoters arranged in tandem. Unexpectedly, after a first burst of RNA synthesis early in infection, transcription was reactivated late in infection. Reactivation was not dependent on the location of the promoter in the genome or on the presence of the upstream late regulatory sequences. The mRNA synthesized from the reactivated promoter in the late phase had the same 5' and 3' ends as the molecules transcribed in the early phase. Interestingly, these molecules were efficiently translated despite the absence of the poly(A) leader characteristic of late mRNAs. Reactivation appears to be dependent on virus assembly since it is prevented by rifampin, a specific inhibitor of morphogenesis. Finally, analysis of various other early genes showed that reactivation is not unique to the 7.5K early promoter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steroid hormone receptors activate specific gene transcription by binding as hormone-receptor complexes to short DNA enhancer-like elements termed hormone response elements (HREs). We have shown previously that a highly conserved 66 amino acid region of the oestrogen (ER) and glucocorticoid (GR) receptors, which corresponds to part of the receptor DNA binding domain (region C) is responsible for determining the specificity of target gene activation. This region contains two sub-regions (CI and CII) analogous to the 'zinc-fingers' of the transcription factor TFIIIA. We show here that CI and CII appear to be separate domains both involved in DNA binding. Furthermore, using chimaeric ERs in which either the first (N-terminal) (CI) or second (CII) 'zinc finger' region has been exchanged with that of the GR, indicates that it is the first 'zinc finger' which largely determines target gene specificity. We suggest that receptor recognition of the HRE is analogous to that of the helix-turn-helix DNA binding motif in that the receptor binds to DNA as a dimer with the first 'zinc finger' lying in the major groove recognizing one half of the palindromic HRE, and that protein-DNA interaction is stabilized through non-specific DNA binding and dimer interactions contributed by the second 'zinc finger'.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Inherited ichthyoses belong to a large, clinically and etiologically heterogeneous group of mendelian disorders of cornification, typically involving the entire integument. Over the recent years, much progress has been made defining their molecular causes. However, there is no internationally accepted classification and terminology. OBJECTIVE: We sought to establish a consensus for the nomenclature and classification of inherited ichthyoses. METHODS: The classification project started at the First World Conference on Ichthyosis in 2007. A large international network of expert clinicians, skin pathologists, and geneticists entertained an interactive dialogue over 2 years, eventually leading to the First Ichthyosis Consensus Conference held in Sorèze, France, on January 23 and 24, 2009, where subcommittees on different issues proposed terminology that was debated until consensus was reached. RESULTS: It was agreed that currently the nosology should remain clinically based. "Syndromic" versus "nonsyndromic" forms provide a useful major subdivision. Several clinical terms and controversial disease names have been redefined: eg, the group caused by keratin mutations is referred to by the umbrella term, "keratinopathic ichthyosis"-under which are included epidermolytic ichthyosis, superficial epidermolytic ichthyosis, and ichthyosis Curth-Macklin. "Autosomal recessive congenital ichthyosis" is proposed as an umbrella term for the harlequin ichthyosis, lamellar ichthyosis, and the congenital ichthyosiform erythroderma group. LIMITATIONS: As more becomes known about these diseases in the future, modifications will be needed. CONCLUSION: We have achieved an international consensus for the classification of inherited ichthyosis that should be useful for all clinicians and can serve as reference point for future research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The publication of a draft of the human genome and of large collections of transcribed sequences has made it possible to study the complex relationship between the transcriptome and the genome. In the work presented here, we have focused on mapping mRNA 3' ends onto the genome by use of the raw data generated by the expressed sequence tag (EST) sequencing projects. We find that at least half of the human genes encode multiple transcripts whose polyadenylation is driven by multiple signals. The corresponding transcript 3' ends are spread over distances in the kilobase range. This finding has profound implications for our understanding of gene expression regulation and of the diversity of human transcripts, for the design of cDNA microarray probes, and for the interpretation of gene expression profiling experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seborrheic keratoses (SKs) are common, benign epithelial tumors of the skin that do not, or very rarely, progress into malignancy, for reasons that are not understood. We investigated this by gene expression profiling of human SKs and cutaneous squamous cell carcinomas (SCCs) and found that several genes previously connected with keratinocyte tumor development were similarly modulated in SKs and SCCs, whereas the expression of others differed by only a few fold. In contrast, the tyrosine kinase receptor FGF receptor-3 (FGFR3) and the transcription factor forkhead box N1 (FOXN1) were highly expressed in SKs, and close to undetectable in SCCs. We also showed that increased FGFR3 activity was sufficient to induce FOXN1 expression, counteract the inhibitory effect of EGFR signaling on FOXN1 expression and differentiation, and induce differentiation in a FOXN1-dependent manner. Knockdown of FOXN1 expression in primary human keratinocytes cooperated with oncogenic RAS in the induction of SCC-like tumors, whereas increased FOXN1 expression triggered the SCC cells to shift to a benign SK-like tumor phenotype, which included increased FGFR3 expression. Thus,we have uncovered a positive regulatory loop between FGFR3 and FOXN1 that underlies a benign versus malignant skin tumor phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, the catabolite repression control (Crc) protein repressed the formation of the blue pigment pyocyanin in response to a preferred carbon source (succinate) by interacting with phzM mRNA, which encodes a key enzyme in pyocyanin biosynthesis. Crc bound to an extended imperfect recognition sequence that was interrupted by the AUG translation initiation codon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. RESULTS: Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFbeta, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFbeta. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. CONCLUSION: This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pseudomonas fluorescens strain CHA0 protects plants from various root diseases. Antibiotic metabolites synthesized by this strain play an important role in disease suppression; their production is mediated by the global activator gene gacA. Here we show by complementation that the gacA gene is also essential for the expression of two extracellular enzymes in P. fluorescens CHA0: phospholipase C and a 47-kDa metalloprotease. In contrast, the production of another exoenzyme, lipase, is not regulated by the gacA gene. Protease, phospholipase and antibiotics of P. fluorescens are all known to be optimally produced at the end of exponential growth; thus, the gacA gene appears to be a general stationary-phase regulator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silencing of the transcriptional repressor REST is required for terminal differentiation of neuronal and beta-cells. In this study, we hypothesized that REST expression is controlled by hairy and enhancer of split 1 (HES-1), a transcriptional repressor that plays an important role in brain and pancreas development. We identified several N elements (CTNGTG) within the promoter of REST and confirmed that HES-1 associates with the endogenous promoter of REST. Moreover, using a cells model that overexpress HES-1 and a combination of experimental approaches, we demonstrated that HES-1 reduces endogenous REST expression. Taken together, these results indicate that HES-1 is an upstream negative regulator of REST expression.