344 resultados para TNF RECEPTORS
Resumo:
Chemosensory receptor gene families encode divergent proteins capable of detecting a huge diversity of environmental stimuli that are constantly changing over evolutionary time as organisms adapt to distinct ecological niches. While olfaction is dedicated to the detection of volatile compounds, taste is key to assess food quality for nutritional value and presence of toxic substances. The sense of taste also provides initial signals to mediate endocrine regulation of appetite and food metabolism and plays a role in kin recognition. The fruit fly Drosophila melanogaster is a very good model for studying smell and taste because these senses are very important in insects and because a broad variety of genetic tools are available in Drosophila. Recently, a family of 66 chemosensory receptors, the Ionotropic Receptors (IRs) was described in fruit flies. IRs are distantly related to ionotropic glutamate receptors (iGluRs), but their evolutionary origin from these synaptic receptors is unclear. While 16 IRs are expressed in the olfactory system, nothing is known about the other members of this repertoire. In this thesis, I describe bioinformatic, expression and functional analyses of the IRs aimed at understanding how these receptors have evolved, and at characterising the role of the non-olfactory IRs. I show that these have emerged at the basis of the protostome lineage and probably have acquired their sensory function very early. Moreover, although several IRs are conserved across insects, there are rapid and dramatic changes in the size and divergence of IR repertoires across species. I then performed a comprehensive analysis of IR expression in the larva of Drosophila melanogaster, which is a good model to study taste and feeding mechanisms as it spends most of its time eating or foraging. I found that most of the divergent members of the IR repertoire are expressed in both peripheral and internal gustatory neurons, suggesting that these are involved in taste perception. Finally, through the establishment of a new neurophysiological assay in larvae, I identified for the first time subsets of IR neurons that preferentially detect sugars and amino acids, indicating that IRs might be involved in sensing these compounds. Together, my results indicate that IRs are an evolutionarily dynamic and functionally versatile family of receptors. In contrast to the olfactory IRs that are well-conserved, gustatory IRs are rapidly evolving species-specific receptors that are likely to be involved in detecting a wide variety of tastants. - La plupart des animaux possèdent de grandes familles de récepteurs chimiosensoriels dont la fonction est de détecter l'immense diversité de composés chimiques présents dans l'environnement. Ces récepteurs évoluent en même temps que les organismes s'adaptent à leur écosystème. Il existe deux manières de percevoir ces signaux chimiques : l'olfaction et le goût. Alors que le système olfactif perçoit les composés volatiles, le sens du goût permet d'évaluer, par contact, la qualité de la nourriture, de détecter des substances toxiques et de réguler l'appétit et le métabolisme. L'un des organismes modèles les plus pertinents pour étudier le sens du goût est le stade larvaire de la mouche du vinaigre Drosophila melanogaster. En effet, la principale fonction du stade larvaire est de trouver de la nourriture et de manger. De plus, il est possible d'utiliser tous les outils génétiques développés chez la drosophile. Récemment, une nouvelle famille de 66 récepteurs chimiosensoriels appelés Récepteurs Ionotropiques (IRs) a été découverte chez la drosophile. Bien que leur orogine soit peu claire, ces récepteurs sont similaires aux récepteurs ionotropiques glutamatergiques impliqués dans la transmission synaptique. 16 IRs sont exprimés dans le système olfactif de la mouche adulte, mais pour l'instant on ne connaît rien des autres membres de cette famille. Durant ma thèse, j'ai effectué des recherches sur l'évolution de ces récepteurs ainsi que sur l'expression et la fonction des IRs non olfactifs. Je démontre que les IRs sont apparus chez l'ancêtre commun des protostomiens et ont probablement acquis leur fonction sensorielle très rapidement. De plus, bien qu'un certain nombre d'IRs olfactifs soient conservés chez les insectes, d'importantes variations dans la taille et la divergence des répertoires d'IRs entre les espèces ont été constatées. J'ai également découvert qu'un grand nombre d'IRs non olfactifs sont exprimés dans différents organes gustatifs, ce qui leur confère probablement une fonction dans la perception des goûts. Finalement, pour la première fois, des neurones exprimant des IRs ont été identifiés pour leur fonction dans la perception de sucres et d'acides aminés chez la larve. Mes résultats présentent les IRs comme une famille très dynamique, aux fonctions très variées, qui joue un rôle tant dans l'odorat que dans le goût, et dont la fonction est restée importante tout au long de l'évolution. De plus, l'identification de neurones spécialisés dans la perception de certains composés permettra l'étude des circuits neuronaux impliqués dans le traitement de ces informations.
Resumo:
OBJECTIVE: To analyze the expression of estrogen receptors α and β as well as their target genes implicated in proliferation, c-myc, cyclin D1, and GREB1, in the endometrium of women with or without endometriosis. DESIGN: Expression analysis in human tissue. SETTING: University hospitals and a clinic. PATIENT(S): Ninety-one premenopausal women (59 patients with endometriosis and 32 controls) undergoing laparoscopic surgery. INTERVENTION(S): Biopsies were obtained at time of surgery, performed during the proliferative phase of the cycle. MAIN OUTCOME MEASURE(S): Estrogen receptors α and β as well as c-myc, cyclin D1, and GREB1 mRNA expression levels were determined by quantitative reverse transcriptase-polymerase chain reaction. Tissue localization of these estrogen-regulated genes was analyzed by immunohistochemistry. RESULT(S): Estrogen receptors α and β as well as c-myc, cyclin D1, and GREB1 mRNA expression levels were increased in ectopic tissue in comparison with both normal and eutopic endometrium. Estrogen receptor mRNA levels also were upregulated in the eutopic peritoneal tissue of patients with endometriosis. Cyclin D1 and GREB1 expression was augmented in eutopic endometrium. c-myc, cyclin D1, and GREB1 proteins exhibited a nuclear localization in ectopic endometrial tissue. CONCLUSION(S): This constitutes the first report of increased expression of GREB1, as well as cyclin D1 and c-myc, in peritoneal endometriotic lesions, implicating these proteins in estrogen-dependent growth in this context.
Resumo:
The discovery in 1988 of endothelin, the most potent human endogenous vasoconstrictor, has opened the race to the discovery of a new weapon against arterial hypertension. The development of the endothelin receptors antagonists (ERAs) and the demonstration of their efficacy in preclinical models initially raised a wave of enthusiasm, which was however tempered due to their unfavorable side effect profile. In this article we will review the phases of the development ERAs, and their current and future place as therapeutic tool against arterial hypertension.
Resumo:
Alcoholic liver disease is mediated via activation of TLR4 signaling; MyD88-dependent and -independent signals are important contributors to injury in mouse models. Adiponectin, an anti-inflammatory adipokine, suppresses TLR4/MyD88-dependent responses via induction of heme oxygenase-1 (HO-1). Here we investigated the interactions between chronic ethanol, adiponectin, and HO-1 in regulation of TLR4/MyD88-independent signaling in macrophages and an in vivo mouse model. After chronic ethanol feeding, LPS-stimulated expression of IFN-β and CXCL10 mRNA was increased in primary cultures of Kupffer cells compared with pair-fed control mice. Treatment of Kupffer cells with globular adiponectin (gAcrp) normalized this response. LPS-stimulated IFN-β/CXCL10 mRNA and CXCL10 protein was also reduced in RAW 264.7 macrophages treated with gAcrp or full-length adiponectin. gAcrp and full-length adiponectin acted via adiponectin receptors 1 and 2, respectively. gAcrp decreased TLR4 expression in both Kupffer cells and RAW 264.7 macrophages. Small interfering RNA knockdown of HO-1 or inhibition of HO-1 activity with zinc protoporphyrin blocked these effects of gAcrp. C57BL/6 mice were exposed to chronic ethanol feeding, with or without treatment with cobalt protoporphyrin, to induce HO-1. After chronic ethanol feeding, mice were sensitized to in vivo challenge with LPS, expressing increased IFN-β/CXCL10 mRNA and CXCL10 protein in liver compared with control mice. Pretreatment with cobalt protoporphyrin 24 h before LPS challenge normalized this effect of ethanol. Adiponectin and induction of HO-1 potently suppressed TLR4-dependent/MyD88-independent cytokine expression in primary Kupffer cells from rats and in mouse liver after chronic ethanol exposure. These data suggest that induction of HO-1 may be a useful therapeutic strategy in alcoholic liver disease.
Resumo:
OBJECTIVE: The specific inhibition of phosphodiesterase (PDE)4 and dual inhibition of PDE3 and PDE4 has been shown to decrease inflammation by suppression of pro-inflammatory cytokine synthesis. We examined the effect of roflumilast, a selective PDE4 inhibitor marketed for severe COPD, and the investigational compound pumafentrine, a dual PDE3/PDE4 inhibitor, in the preventive dextran sodium sulfate (DSS)-induced colitis model. METHODS: The clinical score, colon length, histologic score and colon cytokine production from mice with DSS-induced colitis (3.5% DSS in drinking water for 11 days) receiving either roflumilast (1 or 5 mg/kg body weight/d p.o.) or pumafentrine (1.5 or 5 mg/kg/d p.o.) were determined and compared to vehicle treated control mice. In the pumafentrine-treated animals, splenocytes were analyzed for interferon-γ (IFNγ) production and CD69 expression. RESULTS: Roflumilast treatment resulted in dose-dependent improvements of clinical score (weight loss, stool consistency and bleeding), colon length, and local tumor necrosis factor-α (TNFα) production in the colonic tissue. These findings, however, were not associated with an improvement of the histologic score. Administration of pumafentrine at 5 mg/kg/d alleviated the clinical score, the colon length shortening, and local TNFα production. In vitro stimulated splenocytes after in vivo treatment with pumafentrine showed a significantly lower state of activation and production of IFNγ compared to no treatment in vivo. CONCLUSIONS: These series of experiments document the ameliorating effect of roflumilast and pumafentrine on the clinical score and TNF expression of experimental colitis in mice.
Resumo:
BACKGROUND: In mice, a partial loss of function of the epithelial sodium channel (ENaC), which regulates sodium excretion in the distal nephron, causes pseudohypoaldosteronism, a salt-wasting syndrome. The purpose of the present experiments was to examine how alpha ENaC knockout heterozygous (+/-) mice, which have only one allele of the gene encoding for the alpha subunit of ENaC, control their blood pressure (BP) and sodium balance. METHODS: BP, urinary electrolyte excretion, plasma renin activity, and urinary adosterone were measured in wild-type (+/+) and heterozygous (+/-) mice on a low, regular, or high sodium diet. In addition, the BP response to angiotensin II (Ang II) and to Ang II receptor blockade, and the number and affinity of Ang II subtype 1 (AT1) receptors in renal tissue were analyzed in both mouse strains on the three diets. RESULTS: In comparison with wild-type mice (+/+), alpha ENaC heterozygous mutant mice (+/-) showed an intact capacity to maintain BP and sodium balance when studied on different sodium diets. However, no change in plasma renin activity was found in response to changes in sodium intake in alpha ENaC +/- mice. On a normal salt diet, heterozygous mice had an increased vascular responsiveness to exogenous Ang II (P < 0.01). Moreover, on a normal and low sodium intake, these mice exhibited an increase in the number of AT1 receptors in renal tissues; their BP lowered markedly during the Ang II receptor blockade (P < 0.01) and there was a clear tendency for an increase in urinary aldosterone excretion. CONCLUSIONS: alpha ENaC heterozygous mice have developed an unusual mechanism of compensation leading to an activation of the renin-angiotensin system, that is, the up-regulation of AT1 receptors. This up-regulation may be due to an increase in aldosterone production.
Resumo:
While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.
Resumo:
Ischemia/reperfusion (I/R) is a pivotal mechanism of liver damage after liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol (CBD), the nonpsychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, and gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor α (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, intercellular adhesion molecule 1 mRNA levels; tissue neutrophil infiltration; nuclear factor κB (NF-κB) activation), stress signaling (p38MAPK and JNK), and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress, and cell death and also attenuated the bacterial endotoxin-triggered NF-κB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecule expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB(2) knockout mice and were not prevented by CB(1/2) antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent of classical CB(1/2) receptors.
Resumo:
Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARgamma and PPARbeta, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARgamma and PPARbeta and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARbeta-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions.
Resumo:
OBJECTIVE: Interleukin-1 (IL-1) mediates ischemia-reperfusion injury and graft inflammation after heart transplantation. IL-1 affects target cells through two distinct types of transmembrane receptors, type-1 receptor (IL-1R1), which transduces the signal, and the non-signaling type-2 receptor (IL-1R2), which acts as a ligand sink that subtracts IL-1beta from IL-1R1. We analyzed the efficacy of adenovirus (Ad)-mediated gene transfer of a soluble IL-1R2-Ig fusion protein in delaying cardiac allograft rejection and the mechanisms underlying the protective effect. METHODS: IL-1 inhibition by IL-1R2-Ig was tested using an in vitro functional assay whereby endothelial cells preincubated with AdIL-1R2-Ig or control virus were stimulated with recombinant IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and urokinase-type plasminogen activator (u-PA) induction was measured by zymography. AdIL-1R2-Ig was delivered to F344 rat donor hearts ex vivo, which were placed in the abdominal position in LEW hosts. Intragraft inflammatory cell infiltrates and proinflammatory cytokine expression were analyzed by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. RESULTS: IL-1R2-Ig specifically inhibited IL-1beta-induced u-PA responses in vitro. IL-1R2-Ig gene transfer reduced intragraft monocytes/macrophages and CD4(+) cell infiltrates (p<0.05), TNF-alpha and transforming growth factor-beta (TGF-beta) expression (p<0.05), and prolonged graft survival (15.6+/-5.7 vs 10.3+/-2.5 days with control vector and 10.1+/-2.1 days with buffer alone; p<0.01). AdIL-1R2-Ig combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone (19.4+/-3.0 vs 15.9+/-1.8 days; p<0.05). CONCLUSIONS: Soluble IL-1 type-2 receptor gene transfer attenuates cardiac allograft rejection in a rat model. IL-1 inhibition may be useful as an adjuvant therapy in heart transplantation.
Resumo:
BACKGROUND: Activation of Fas (CD95) by its ligand (FasL) rapidly induces cell death through recruitment and activation of caspase-8 via the adaptor protein Fas-associated death domain protein (FADD). However, Fas signals do not always result in apoptosis but can also trigger a pathway that leads to proliferation. We investigated the level at which the two conflicting Fas signals diverge and the protein(s) that are implicated in switching the response. RESULTS: Under conditions in which proliferation of CD3-activated human T lymphocytes is increased by recombinant FasL, there was activation of the transcription factors NF-kappaB and AP-1 and recruitment of the caspase-8 inhibitor and FADD-interacting protein FLIP (FLICE-like inhibitory protein). Fas-recruited FLIP interacts with TNF-receptor associated factors 1 and 2, as well as with the kinases RIP and Raf-1, resulting in the activation of the NF-kappaB and extracellular signal regulated kinase (Erk) signaling pathways. In T cells these two signal pathways are critical for interleukin-2 production. Increased expression of FLIP in T cells resulted in increased production of interleukin-2. CONCLUSIONS: We provide evidence that FLIP is not simply an inhibitor of death-receptor-induced apoptosis but that it also mediates the activation of NF-kappaB and Erk by virtue of its capacity to recruit adaptor proteins involved in these signaling pathways.
Resumo:
Toll-like receptors (TLRs) are pattern recognition receptors playing a fundamental role in sensing microbial invasion and initiating innate and adaptive immune responses. TLRs are also triggered by danger signals released by injured or stressed cells during sepsis. Here we focus on studies developing TLR agonists and antagonists for the treatment of infectious diseases and sepsis. Positioned at the cell surface, TLR4 is essential for sensing lipopolysaccharide of Gram-negative bacteria, TLR2 is involved in the recognition of a large panel of microbial ligands, while TLR5 recognizes flagellin. Endosomal TLR3, TLR7, TLR8, TLR9 are specialized in the sensing of nucleic acids produced notably during viral infections. TLR4 and TLR2 are favorite targets for developing anti-sepsis drugs, and antagonistic compounds have shown efficient protection from septic shock in pre-clinical models. Results from clinical trials evaluating anti-TLR4 and anti-TLR2 approaches are presented, discussing the challenges of study design in sepsis and future exploitation of these agents in infectious diseases. We also report results from studies suggesting that the TLR5 agonist flagellin may protect from infections of the gastrointestinal tract and that agonists of endosomal TLRs are very promising for treating chronic viral infections. Altogether, TLR-targeted therapies have a strong potential for prevention and intervention in infectious diseases, notably sepsis.
Resumo:
Retinoic acid-the active metabolite of vitamin A-influences biological processes by activating the retinoic acid receptor (RAR). In this issue, Schug et al. (2007) demonstrate that retinoic acid also activates the peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta). Remarkably, retinoic acid signaling through RAR or PPARbeta/delta-which depends on cytoplasmic retinoic acid transporters-commits the cell to opposite fates, apoptosis or survival, respectively.
Resumo:
XIAP prevents apoptosis by binding to and inhibiting caspases, and this inhibition can be relieved by IAP antagonists, such as Smac/DIABLO. IAP antagonist compounds (IACs) have therefore been designed to inhibit XIAP to kill tumor cells. Because XIAP inhibits postmitochondrial caspases, caspase 8 inhibitors should not block killing by IACs. Instead, we show that apoptosis caused by an IAC is blocked by the caspase 8 inhibitor crmA and that IAP antagonists activate NF-kappaB signaling via inhibtion of cIAP1. In sensitive tumor lines, IAP antagonist induced NF-kappaB-stimulated production of TNFalpha that killed cells in an autocrine fashion. Inhibition of NF-kappaB reduced TNFalpha production, and blocking NF-kappaB activation or TNFalpha allowed tumor cells to survive IAC-induced apoptosis. Cells treated with an IAC, or those in which cIAP1 was deleted, became sensitive to apoptosis induced by exogenous TNFalpha, suggesting novel uses of these compounds in treating cancer.
Resumo:
The antibody display technology (ADT) such as phage display (PD) has substantially improved the production of monoclonal antibodies (mAbs) and Ab fragments through bypassing several limitations associated with the traditional approach of hybridoma technology. In the current study, we capitalized on the PD technology to produce high affinity single chain variable fragment (scFv) against tumor necrosis factor-alpha (TNF- α), which is a potent pro-inflammatory cytokine and plays important role in various inflammatory diseases and malignancies. To pursue production of scFv antibody fragments against human TNF- α, we performed five rounds of biopanning using stepwise decreased amount of TNF-α (1 to 0.1 μ g), a semi-synthetic phage antibody library (Tomlinson I + J) and TG1 cells. Antibody clones were isolated and selected through enzyme-linked immunosorbent assay (ELISA) screening. The selected scFv antibody fragments were further characterized by means of ELISA, PCR, restriction fragment length polymorphism (RFLP) and Western blot analyses as well as fluorescence microscopy and flow cytometry. Based upon binding affinity to TNF-α , 15 clones were selected out of 50 positive clones enriched from PD in vitro selection. The selected scFvs displayed high specificity and binding affinity with Kd values at nm range to human TNF-α . The immunofluorescence analysis revealed significant binding of the selected scFv antibody fragments to the Raji B lymphoblasts. The effectiveness of the selected scFv fragments was further validated by flow cytometry analysis in the lipopolysaccharide (LPS) treated mouse fibroblast L929 cells. Based upon these findings, we propose the selected fully human anti-TNF-α scFv antibody fragments as potential immunotherapy agents that may be translated into preclinical/clinical applications.