386 resultados para Transient receptor potential proteins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription initiation at eukaryotic protein-coding gene promoters is regulated by a complex interplay of site-specific DNA-binding proteins acting synergistically or antagonistically. Here, we have analyzed the mechanisms of synergistic transcriptional activation between members of the CCAAT-binding transcription factor/nuclear factor I (CTF/NF-I) family and the estrogen receptor. By using cotransfection experiments with HeLa cells, we show that the proline-rich transcriptional activation domain of CTF-1, when fused to the GAL4 DNA-binding domain, synergizes with each of the two estrogen receptor-activating regions. Cooperative DNA binding between the GAL4-CTF-1 fusion and the estrogen receptor does not occur in vitro, and in vivo competition experiments demonstrate that both activators can be specifically inhibited by the overexpression of a proline-rich competitor, indicating that a common limiting factor is mediating their transcriptional activation functions. Furthermore, the two activators functioning synergistically are much more resistant to competition than either factor alone, suggesting that synergism between CTF-1 and the estrogen receptor is the result of a stronger tethering of the limiting target factor(s) to the two promoter-bound activators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collectively, research aimed to understand the regeneration of certain tissues has unveiled the existence of common key regulators. Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed a misregulation of growth factor signaling, in particular that of transforming growth factor ß-1 (TGF-ßl), which led to alterations of skin wound healing and the growth of its appendages, suggesting it may be a general regulator of regenerative processes. We sought to investigate this further by determining whether NFI-C played a role in liver regeneration. Liver regeneration following two-thirds removal of the liver by partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes following injury lead to a rapid, phased proliferation. However, mechanisms controlling the action of liver proliferative factors such as transforming growth factor-ßl (TGF-ß1) and plasminogen activator inhibitor-1 (PAI-1) remain largely unknown. We show that the absence of NFI-C impaired hepatocyte proliferation due to an overexpression of PAI-1 and the subsequent suppression of urokinase plasminogen (uPA) activity and hepatocyte growth factor (HGF) signaling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wildtype mice. The subsequent transient down regulation of NFI-C, as can be explained by a self- regulatory feedback loop with TGF-ßl, may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. Overall, we conclude that NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration. Taken together with NFI-C's actions in other in vivo models of (re)generation, it is plausible that NFI-C may be a general regulator of regenerative processes. - L'ensemble des recherches visant à comprendre la régénération de certains tissus a permis de mettre en évidence l'existence de régulateurs-clés communs. L'étude des souris, dépourvues du gène codant pour le facteur de transcription NFI-C (Nuclear Factor I-C), a montré des dérèglements dans la signalisation de certains facteurs croissance, en particulier du TGF-ßl (transforming growth factor-ßl), ce qui conduit à des altérations de la cicatrisation de la peau et de la croissance des poils et des dents chez ces souris, suggérant que NFI-C pourrait être un régulateur général du processus de régénération. Nous avons cherché à approfondir cette question en déterminant si NFI-C joue un rôle dans la régénération du foie. La régénération du foie, induite par une hépatectomie partielle correspondant à l'ablation des deux-tiers du foie, constitue un modèle de régénération bien établi dans lequel la lésion induite conduit à la prolifération rapide des hépatocytes de façon synchronisée. Cependant, les mécanismes contrôlant l'action de facteurs de prolifération du foie, comme le facteur de croissance TGF-ßl et l'inhibiteur de l'activateur du plasminogène PAI-1 (plasminogen activator inhibitor-1), restent encore très méconnus. Nous avons pu montrer que l'absence de NFI-C affecte la prolifération des hépatocytes, occasionnée par la surexpression de PAI-1 et par la subséquente suppression de l'activité de la protéine uPA (urokinase plasminogen) et de la signalisation du facteur de croissance des hépatocytes HGF (hepatocyte growth factor), un mitogène puissant des hépatocytes. Cela indique que NFI-C agit en premier lieu pour promouvoir la prolifération des hépatocytes au début de la régénération du foie chez les souris de type sauvage. La subséquente baisse transitoire de NFI-C, pouvant s'expliquer par une boucle rétroactive d'autorégulation avec le facteur TGF-ßl, pourrait limiter le nombre d'hépatocytes qui entrent dans la première vague de division cellulaire et/ou inhiber l'initiation de la mitose tardive. L'ensemble de ces résultats nous a permis de conclure que NFI-C agit comme un régulateur de la prolifération des hépatocytes synchrones au cours de la régénération du foie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymocytes and class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes express predominantly heterodimeric alpha/beta CD8. By interacting with non-polymorphic regions of MHC class I molecules CD8 can mediate adhesion or by binding the same MHC molecules that interact with the T-cell antigen receptor (TCR) function as coreceptor in TCR-ligand binding and T-cell activation. Using TCR photoaffinity labelling with a soluble, monomeric photoreactive H-2Kd-peptide derivative complex, we report here that the avidity of TCR-ligand interactions on cloned cytotoxic T cells is very greatly strengthened by CD8. This is primarily explained by coordinate binding of ligand molecules by CD8 and TCR, because substitution of Asp 227 of Kd with Lys severely impaired the TCR-ligand binding on CD8+, but not CD8- cells. Kinetic studies on CD8+ and CD8- cells further showed that CD8 imposes distinct dynamics and a remarkable temperature dependence on TCR-ligand interactions. We propose that the ability of CD8 to act as coreceptor can be modulated by CD8-TCR interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

J Clin Hypertens (Greenwich). 2012;14:773-778. ©2012 Wiley Periodicals, Inc. Postmenopausal women are at greater risk for hypertension-related cardiovascular disease. Antihypertensive therapy may help alleviate arterial stiffness that represents a potential modifiable risk factor of hypertension. This randomized controlled study investigated the difference between an angiotensin receptor blocker and a calcium channel blocker in reducing arterial stiffness. Overall, 125 postmenopausal hypertensive women (age, 61.4±6 years; systolic blood pressure/diastolic blood pressure [SBP/DBP], 158±11/92±9 mm Hg) were randomized to valsartan 320 mg±hydrochlorothiazide (HCTZ) (n=63) or amlodipine 10 mg±HCTZ (n=62). The primary outcome was carotid-to-femoral pulse wave velocity (PWV) changes after 38 weeks of treatment. Both treatments lowered peripheral blood pressure (BP) (-22.9/-10.9 mm Hg for valsartan and -25.2/-11.7 mm Hg for amlodipine, P=not significant) and central BP (-15.7/-7.6 mm Hg for valsartan and -19.2/-10.3 mm Hg for amlodipine, P<.05 for central DBP). Both treatments similarly reduced the carotid-femoral PWV (-1.9 vs -1.7 m/s; P=not significant). Amlodipine was associated with a higher incidence of peripheral edema compared with the valsartan group (77% vs 14%, P<.001). BP lowering in postmenopausal women led to a reduction in arterial stiffness as assessed by PWV measurement. Both regimens reduced PWV to a similar degree after 38 weeks of treatment despite differences in central BP lowering, suggesting that the effect of valsartan on PWV is mediated through nonhemodynamic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Panarteritis nodosa (PAN) is a systemic vasculitis affecting small and medium-sized arteries. Neuro-ophthalmological complications of PAN are rare but numerous, and may affect the eye, the visual and the oculomotor pathways. Such complications occur mainly in patients previously diagnosed with PAN. OBSERVATION: A 51-year-old woman presented with an isolated right trochlear (IV) palsy, in the setting of headaches and fluctuating fever of unknown etiology. Erythrocyte sedimentation rate was 13 mm and full blood cell count was normal. Previous chest X-ray and blood studies were negative for an infection or inflammation. Orbital and cerebral CT scan was normal. Spontaneous recovery of diplopia ensued over four days. Two days later, paresthesia and sensory paresis of the dorsal portion of the left foot were present. Lumbar puncture revealed 14 leucocytes (76 percent lymphocytes) with elevated proteins, but blood studies and serologies were negative. A diagnosis of undetermined meningo-myelo-radiculoneuritis was made. Because of a possible tick bite six weeks previously the patient was empirically treated with 2 g intravenous ceftriaxone for 3 weeks. Fever rapidly dropped. Six weeks after the onset of diplopia, acute onset of blindness in her right eye, diffuse arthralgias and fever motivated a new hospitalization. There was a central retinal artery occlusion of the right eye. Blood studies now revealed signs of systemic inflammation (ESR 30 mm, CRP 12 mg/L, ANA 1/80, pANCA 1/40, leucocytosis 12.4 G/L, Hb 111 g/L, Ht 33 percent). Biopsy of the left sural nerve revealed arterial fibrinoid necrosis. A diagnosis of PAN was made. CONCLUSIONS: Transient diplopia can be the heralding symptom of a systemic vasculitis such as PAN, giant cell arteritis and Wegener granulomatosis. In this patient the presence of accompanying systemic symptoms raised a suspicion of systemic inflammation, but the absence of serologic and imaging abnormalities precluded a specific diagnosis initially. A few weeks later, the presence of a second ischemic event (retinal) and positive blood studies led to a further diagnostic procedure. Oculomotor and abducens palsies have rarely been reported in association with PAN. We report the first case of trochlear nerve paresis as the inaugural neurological sign of PAN. This case highlights the importance of considering inflammatory systemic disorders in patients with acute diplopia particularly when they are young, lack vascular risk factors or cause, and complain of associated systemic symptoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives To prospectively assess respiratory health in wastewater workers and garbage collectors over 5 years. Methods Exposure, respiratory symptoms and conditions, spirometry and lung-specific proteins were assessed yearly in a cohort of 304 controls, 247 wastewater workers and 52 garbage collectors. Results were analysed with random coefficient models and linear regression taking into account several potential confounders. Results Symptoms, spirometry and lung-specific proteins were not affected by occupational exposure. Conclusions In this population no effects of occupational exposure to bioaerosols were found, probably because of good working conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its small size and particular isolating barriers, the eye is an ideal target for local therapy. Recombinant protein ocular delivery requires invasive and painful repeated injections. Alternatively, a transfected tissue might be used as a local producer of transgene-encoded therapeutic protein. We have developed a nondamaging electrically mediated plasmid delivery technique (electrotransfer) targeted to the ciliary muscle, which is used as a reservoir tissue for the long-lasting expression and secretion of therapeutic proteins. High and long-lasting reporter gene expression was observed, which was restricted to the ciliary muscle. Chimeric TNF-alpha soluble receptor (hTNFR-Is) electrotransfer led to elevated protein secretion in aqueous humor and to drastic inhibition of clinical and histological inflammation scores in rats with endotoxin-induced uveitis. No hTNFR-Is was detected in the serum, demonstrating the local delivery of proteins using this method. Plasmid electrotransfer to the ciliary muscle, as performed in this study, did not induce any ocular pathology or structural damage. Local and sustained therapeutic protein production through ciliary muscle electrotransfer is a promising alternative to repeated intraocular protein administration for a large number of inflammatory, degenerative, or angiogenic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Female-specific expression of the Xenopus laevis vitellogenin gene was reconstituted in vitro by addition of recombinant vaccinia-virus-produced estrogen receptor to nuclear extracts from male livers, in which this gene is silent. Transcription enhancement was at least 30 times and was selectively restricted to vitellogenin templates containing the estrogen-responsive unit. Thus, in male hepatocytes, estrogen receptor is the limiting regulatory factor that in the female liver controls efficient and accurate sex-specific expression of the vitellogenin gene. Furthermore, the Xenopus liver factor B, which is essential in addition to the estrogen receptor for the activation of this gene, was successfully replaced in the Xenopus extract by purified human nuclear factor I, identifying factor B of Xenopus as a functional homolog of this well-characterized human transcription factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPAR) and thyroid hormone receptors (TR) are members of the nuclear receptor superfamily, which regulate lipid metabolism and tissue differentiation. In order to bind to DNA and activate transcription, PPAR requires the formation of heterodimers with the retinoid X receptor (RXR). In addition to activating transcription through its own response elements, PPAR is able to selectively down-regulate the transcriptional activity of TR, but not vitamin D receptor. The molecular basis of this functional interaction has not been fully elucidated. By means of site-directed mutagenesis of hPPAR alpha we mapped its inhibitory action on TR to a leucine zipper-like motif in the ligand binding domain of PPAR, which is highly conserved among all subtypes of this receptor and mediates heterodimerization with RXR. Replacement of a single leucine by arginine at position 433 of hPPAR alpha (L433R) abolished heterodimerization of PPAR with RXR and consequently its trans-activating capacity. However, a similar mutation of a leucine residue to arginine at position 422 showed no alteration of heterodimerization, DNA binding, or transcriptional activation. The dimerization deficient mutant L433R was no longer able to inhibit TR action, demonstrating that the selective inhibitory effect of PPAR results from the competition for RXR as well as possibly for other TR-auxiliary proteins. In contrast, abolition of DNA binding by a mutation in the P-box of PPAR (C122S) did not eliminate the inhibition of TR trans-activation, indicating that competition for DNA binding is not involved. Additionally, no evidence for the formation of PPAR:TR heterodimers was found in co-immunoprecipitation experiments. In summary, we have demonstrated that PPAR selectively inhibits the transcriptional activity of TRs by competition for RXR and possibly non-RXR TR-auxiliary proteins. In contrast, this functional interaction is independent of the formation of PPAR:TR heterodimers or competition for DNA binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

peroxisome proliferator-activated receptors (PPARs) are nuclear receptors acting as lipid sensors. Besides its metabolic activity in peripheral organs, the PPAR beta/delta isotype is highly expressed in the brain and its deletion in mice induces a brain developmental defect. Nevertheless, exploration of PPARbeta action in the central nervous system remains sketchy. The lipid content alteration observed in PPARbeta null brains and the positive action of PPARbeta agonists on oligodendrocyte differentiation, a process characterized by lipid accumulation, suggest that PPARbeta acts on the fatty acids and/or cholesterol metabolisms in the brain. PPARbeta could also regulate central inflammation and antioxidant mechanisms in the damaged brain. Even if not fully understood, the neuroprotective effect of PPARbeta agonists highlights their potential benefit to treat various acute or chronic neurological disorders. In this perspective, we need to better understand the basic function of PPARbeta in the brain. This review proposes different leads for future researches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding free energy for the interaction between serines 204 and 207 of the fifth transmembrane helix of the beta(2)-adrenergic receptor (beta(2)-AR) and catecholic hydroxyl (OH) groups of adrenergic agonists was analyzed using double mutant cycles. Binding affinities for catecholic and noncatecholic agonists were measured in wild-type and mutant receptors, carrying alanine replacement of the two serines (S204A, S207A beta(2)-AR), a constitutive activating mutation, or both. The free energy coupling between the losses of binding energy attributable to OH deletion from the ligand and from the receptor indicates a strong interaction (nonadditivity) as expected for a direct binding between the two sets of groups. However, we also measured a significant interaction between the deletion of OH groups from the receptor and the constitutive activating mutation. This suggests that a fraction of the decrease in agonist affinity caused by serine mutagenesis may involve a shift in the conformational equilibrium of the receptor toward the inactive state. Direct measurements using a transient transfection assay confirm this prediction. The constitutive activity of the (S204A, S207A) beta(2)-AR mutant is 50 to 60% lower than that of the wild-type beta(2)-AR. We conclude that S204 and S207 do not only provide a docking site for the agonist, but also control the equilibrium of the receptor between active (R*) and inactive (R) forms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TWEAK is a recently cloned novel member of the TNF ligand family. Here we show that soluble TWEAK is sufficient to induce apoptosis in Kym-1 cells within 18 h. TWEAK-induced apoptosis is indirect and is mediated by the interaction of endogenous TNF and TNF receptor (TNFR)1, as each TNFR1-Fc, neutralizing TNF-specific antibodies and TNFR1-specific Fab fragments efficiently antagonize cell death induction. In addition to this indirect mode of action, co-stimulation of Kym-1 cells with TWEAK enhances TNFR1-mediated cell death induction. In contrast to TNF, TWEAK does only modestly activate NF-kappaB or c-jun N-terminal kinase (JNK) in Kym-1 cells. Although TWEAK binding to Kym-1 cells is easily detectable by flow cytometric analysis, we found neither evidence for expression of the recently identified TWEAK receptor Apo3/TRAMP/wsl/DR3/LARD, nor indications for direct interactions of TWEAK with TNFR. Together, these characteristics of TWEAK-induced signaling in Kym-1 cells argue for the existence of an additional, still undefined non-death domain-containing TWEAK receptor in Kym-1 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12-CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of "selective blockade" of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complementary DNA for a glucagon-like peptide-1 receptor was isolated from a human pancreatic islet cDNA library. The isolated clone encoded a protein with 90% identity to the rat receptor. In stably transfected fibroblasts, the receptor bound [125I]GLP-1 with high affinity (Kd = 0.5 nM) and was coupled to adenylate cyclase as detected by a GLP-1-dependent increase in cAMP production (EC50 = 93 pM). Two peptides from the venom of the lizard Heloderma suspectum, exendin-4 and exendin-(9-39), displayed similar ligand binding affinities to the human GLP-1 receptor. Whereas exendin-4 acted as an agonist of the receptor, inducing cAMP formation, exendin-(9-39) was an antagonist of the receptor, inhibiting GLP-1-induced cAMP production. Because GLP-1 has been proposed as a potential agent for treatment of NIDDM, our present data will contribute to the characterization of the receptor binding site and the development of new agonists of this receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary The CD4 molecule plays a key role in AIDS pathogenesis, it is required for entry of the virus into permissive cells and its subsequent down-modulation of the cell surface is a hallmark of HN-1 infected cells. The virus encodes no less than three proteins that participate in this process: Nef, Vpu and Env. Vpu protein interacts with CD4 within the endoplasmic reticulum of infected cells, where it targets CD4 for degradation through the interaction with a cellular protein named ß-TrCP1. This F-box protein functions as the substrate recognition subunit of the SCF ß-Trcr E3 ubiquitin ligase, which normally induce the ubiquitination and subsequent degradation of various proteins such as ß-catenin and IxBa. Mammals possess a homologue of ß-TrCP1, HOS, also named ß-TrCP2 which has a cytoplasmic subcellular distribution. Structural analysis of the ligand-binding domain of both homologues shows striking surface similarities. Both F-box proteins have a redundant role in a number of cellular processes; however the potential role of ß-TrCP2 in HIV-1 infected cells has not been evaluated. In the present study, we assessed the existence of génetic variants of BRTC, encoding ß-TrCP1, and evaluated whether these variants would affect CD4 down-modulation. Additionally, we determined whether ß-TrCP2 shares with its homologue structural and functional properties that would allow it to bind Vpu, modulate CD4 expression, and thus participate in HN-1 pathogenesis. We identified a single nucleotide polymorphism present in the human population with an allelic frequency of 0.03 that leads to the substitution of alanine 507 by a serine. However, we showed by transient transfection in HeLa CD4+ cells that this variant behaves as ß-TrCP1 with respect to CD4 down-modulation. We established transient expression systems in HeLa CD4+ cells to test whether ß-TrCP2 is implicated in Vpu-mediated CD4 down-modulation. We show by coimmunoprecipitation experiments that ß-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as ß-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be completely reversed through the silencing of endogenous ß-TrCP 1 or ß-TrCP2 individually, but required both genes to be silenced simultaneously. We evaluated the role of ß-TrCP1 and ß-TrCP2 in HIV-1 life cycle using silencing prior to actual viral infection. Both ß-TrCP1 and ß-TrCP2 contributed to CD4 down-modulation during aone-cycle viral infection iri Ghost cells. In addition, the combined silencing of both homologues in the absence of env and nef reversed CD4 down-modulation, showing that ß-TrCP 1 and ß-TrCP2 represent the main and additive effectors of HIV-1 encoded Vpu. In addition, we showed that silencing of ß-TrCPI but not ß-TrCP2 induced a decrease of HIV-1 LTR-driven expression. In a transient transfection system with Tat and a LTR luciferase reporter, both homologues modulated LTR-driven expression. The present study revealed that ß-TrCP2 represents a novel protein participating in HIV-1 cycle and complete comprehension of the complex interplay occurring between the two F-Box will improve our understanding of HIV-1 infection. Résumé La molécule CD4 joue un rôle clef dans la pathogenèse du SIDA ; elle est requise pour l'entrée du virus dans les cellules permissives et la diminution de sa concentration au niveau de la surface cellulaire est une importante caractéristique des cellules infectées par le VIH-1. Le virus encode pas moins de trois protéines qui participent à ce processus Nef, Vpu et Env. La protéine Vpu lie CD4 au niveau du réticulum endoplasmique et induit sa dégradation en interagissant avec une protéine cellulaire nommée ß-TrCP 1. Cette protéine de type F-Box est une sous unité du complexe ubiquitine-ligase E3 SCFß-TrCP. Elle permet la reconnaissance du substrat par le complexe qui induit l'ubiquitination et la subséquente dégradation de diverses protéines cellulaires comme la ß-catenin ou IκBα. Les mammifères possèdent un homologue à ß-TrCP1appelé ß-TrCP2 (ou HOS). L'analyse comparative du domaine permettant la reconnaissance des substrats des deux homologues montre de frappantes similarités. Le rôle de ß-TrCP2 dans le cycle viral du VIH-1 n'a pas encore été évalué. Lors de cette étude, nous avons recherché l'existence de variants génétique de BTRC (codant pour ß-TrCP1) et nous avons évalué si ces variants pourraient affecter la dégradation des molécules CD4 induite par le virus. Nous avons ainsi identifié un polymorphisme présent dans la population humaine avec une fréquence allélique de 0.03 qui consiste en une substitution de l'alanine 507 par une sérine. Nous avons cependant montré par transfection dans des cellules HeLa CD4+ que ce variant se comporte comme ß-TrCP 1 en ce qui concerne la modulation de CD4. De plus, nous avons déterminé si ß-TrCP2 partageait avec son homologue des propriétés structurelles et fonctionnelles qui lui permettraient de lier Vpu, moduler la concentration de CD4 et ainsi prendre part à la pathogenèse du SIDA. Pour ce faire, nous avons établi un système d'expression temporaire dans des cellules HeLa CD4+. Par co-immunoprécipitation, nous avons montré que ß-TrCP2 lie Vpu et est capable d'induire la dégradation de CD4 aussi efficacement que ß-TrCP1. Dans deux différentes lignées cellulaires, HeLa CD4+ et Jurkat, la dégradation de CD4 n'a pu être complètement inhibée par le silencing individuel de ß-TrCP 1 ou ß-TrCP2, mais nécessitait le silencing simultané des 2 gènes. Nous avons évalué le rôle des deux homologues dans le cycle viral du VIH-1 en infectant des cellules Ghost avec le virus après avoir effectué un silencing des deux protéines. Nous avons ainsi montré que ß-TrCP 1 et ß-TrCP2 contribuent de manière additive à la dégradation de CD4 induite par une infection du VIH-1. Le silencing combiné des deux homologues inhiba complètement cette dégradation en l'absence de env et nef, prouvant qu'aucune autre voie ne participe à ce processus: En outre, nous avons montré que le silencing de ß-TrCP 1 mais pas celui de ß-TrCP2 induisait une diminution de l'expression virale sous contrôle du LTR. Nous n'avons cependant pas été en mesure de reconstituer cet effet en exprimant Tat et un gène reporteur sous contrôle du LTR dans des cellules HeLa CD4+. Le présent travail révèle que ß-TrCP2 représente une nouvelle protéine participant dans le cycle viral du VIH-1. Une complète compréhension de l'effet de chacun des deux homologues sur le cycle viral permettra d'améliorer notre compréhension de l'infection par le VIH-1.