38 resultados para triterpene esters
Resumo:
BACKGROUND AND PROCEDURE: To determine the possible role of Fas/FasL system in the particularly heterogeneous behaviour of neuroblastoma (NB), we have measured the functional expression of Fas and its ligand, FasL, in primary neuroblastoma samples and cell lines by immunohistochemistry and flow cytometry. RESULTS: Our results reveal that while Fas expression is associated with low stage and more mature tumors, heterogeneous FasL expression was mostly detected in high stage tumors, with our apparent correlation to MYCN amplification. Flow cytometric analysis of cell lines demonstrated a high expression of Fas in epithelial-type, HLA class I positive cell lines, which was lost upon activation with phorbol esters. In contrast, Fas ligand was detected in only a small subset of cell lines. CONCLUSIONS: In some cell lines, cytotoxic assays revealed the ability of NB-associated Fas receptor to transduce an apoptotic signal upon triggering. The pattern of functional Fas/FasL expression in tumours and cell lines suggests that this system may be involved in the evasion of highly malignant neuroblastoma cells to host immune response.
Resumo:
We elucidated the mechanisms of action of two n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in Jurkat T-cells. Both DHA and EPA were principally incorporated into phospholipids in the following order: phosphatidylcholine < phosphatidylethanolamine < phosphatidylinositol/phosphatidylserine. Furthermore, two isoforms of phospholipase A(2) (i.e., calcium-dependent and calcium-independent) were implicated in the release of DHA and EPA, respectively, during activation of these cells. The two fatty acids inhibited the phorbol 12-myristate 13-acetate (PMA)-induced plasma membrane translocation of protein kinase C (PKC)-alpha and -epsilon. The two n-3 PUFAs also inhibited the nuclear translocation of nuclear factor kappaB (NF-kappaB) and the transcription of the interleukin-2 (IL-2) gene in PMA-activated Jurkat T-cells. Together, these results demonstrate that DHA and EPA, being released by two isoforms of phospholipase A(2), modulate IL-2 gene expression by exerting their action on two PKC isoforms and NF-kappaB in Jurkat T-cells.
Resumo:
A procedure for the simultaneous analysis of cell-wall polysaccharides, amides and aliphatic polyesters by transmission Fourier transform infrared microspectroscopy (FTIR) has been established for Arabidopsis petals. The combination of FTIR imaging with spectra derivatization revealed that petals, in contrast to other organs, have a characteristic chemical zoning with high amount of aliphatic compounds and esters in the lamina and of polysaccharides in the stalk of the petal. The hinge region of petals was particular rich in amides as well as in vibrations potentially associated with hemicellulose. In addition, a number of other distribution patterns have been identified. Analyses of mutants in cutin deposition confirmed that vibrations of aliphatic compounds and esters present in the lamina were largely associated with the cuticular polyester. Calculation of spectrotypes, including the standard deviation of intensities, allowed detailed comparison of the spectral features of various mutants. The spectrotypes not only revealed differences in the amount of polyesters in cutin mutants, but also changes in other compound classes. For example, in addition to the expected strong deficiencies in polyester content, the long-chain acyl CoA synthase 2 mutant showed increased intensities of vibrations in a wavelength range that is typical for polysaccharides. Identical spectral features were observed in quasimodo2, a cell-wall mutant of Arabidopsis with a defect in pectin formation that exhibits increased cellulose synthase activity. FTIR thus proved to be a convenient method for the identification and characterization of mutants affected in the deposition of cutin in petals.
Resumo:
A series of cis-configured epoxides and aziridines containing hydrophobic moieties and amino acid esters,were synthesized as new potential inhibitors of the secreted aspartic protease 2 (SAP2) of Candida albicans. Enzyme assays revealed the N- benzyl-3-phenyl-substituted aziridines 11 and 17 as the most potent inhibitors, with second-order inhibition, rate constants (k(2)) between 56000 and 12-1000 M-1 min(-1). The compounds were shown to be pseudo-irreversible dual-mode, inhibitors: the interm ediate esterified enzyme resulting from nucleophilic ring opening was hydrolyzed and yielded amino alcohols as transition state-mimetic reversible inhibitors. The results of docking studies with the ring-closed aziridine forms of the inhibitors suggest binding modes mainly dominated by hydrophobic interactions with the S1, S1' S2, and S2' subsites of the protease, and docking studies with the processed amino alcohol forms predict additional hydrogen bonds of the new hydroxy group to the active site Asp residues. C. albicans growth assays showed the compounds to decrease SAP2-dependent growth while not affecting SAP2-independent growth.
Resumo:
Vitamin E, vitamin A, and carotenoids are essential micronutrients for animals because of their antioxidant and immunostimulant functions and their implications for growth, development, and reproduction. In contrast to mammals and birds, information about their occurrence and distribution is generally lacking in reptiles, constraining our understanding of the use of these micronutrients. Using high-performance liquid chromatography, we determined the concentrations of vitamin E, vitamin A, and carotenoids in plasma, storage sites (liver and abdominal fat bodies), and in the colored ventral skin of male Common Lizards, Lacerta vivipara. All tissues shared a similar micronutrient profile, except the liver, which also showed traces of vitamin A(1). The main vitamin E compound present was a-tocopherol followed by lower concentrations of gamma-(beta-)tocopherol. Vitamin A(2) was the main vitamin A compound and it showed the highest concentration in the liver, where vitamin A(2) esters and traces of vitamin A(1) were found. Lutein was the main carotenoid, and it formed esters in the liver and the ventral skin. Zeaxanthin and low concentrations of beta-carotene were also present. The liver was the main storage site for carotenoid and vitamin A, whereas hepatic vitamin E concentrations resembled those present in abdominal Fat bodies. Compared with abdominal fat bodies, the ventral skin contained lower concentrations of vitamin A and vitamin E, but similar concentrations of carotenoicls. These results suggest that important differences exist in micronutrient presence, concentration, and distribution among tissues of lizards and other taxa such as birds and mammals.
Resumo:
The wreck U Pezzo, excavated within the Saint Florent Gulf in northern Corsica was identified as the pink, Saint Etienne, a merchant ship which sank on January 31, 1769. In order to determine the composition of organic materials used to coat the hull or to waterproof different parts of the pink, a study of several samples, using molecular biomarker and carbon isotopic analysis, was initiated. The results revealed that the remarkable yellow coat, covering the outside planks of the ship's bottom under the water line, is composed of sulfur, tallow (of ox and not of cetacean origin) and black pitch which corresponds to a mixture called ``couroi'' or ``stuff'. Onboard ropes had been submitted to a tarring treatment with pitch. Hairs mixed with pitch were identified in samples collected between the two layers of the hull or under the sheathing planking. The study also provides a key model for weathering of pitch, as different degrees of degradation were found between the surface and the heart of several samples. Accordingly, molecular parameters for alteration were proposed. Furthermore novel mixed esters between terpenic and diterpenic alcohols and the free major fatty acids (C(14:0), C(16:0), C(18:0)) were detected in the yellow coat. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: The use of n-3 fatty acids may prevent cardiovascular events in patients with recent myocardial infarction or heart failure. Their effects in patients with (or at risk for) type 2 diabetes mellitus are unknown. METHODS: In this double-blind study with a 2-by-2 factorial design, we randomly assigned 12,536 patients who were at high risk for cardiovascular events and had impaired fasting glucose, impaired glucose tolerance, or diabetes to receive a 1-g capsule containing at least 900 mg (90% or more) of ethyl esters of n-3 fatty acids or placebo daily and to receive either insulin glargine or standard care. The primary outcome was death from cardiovascular causes. The results of the comparison between n-3 fatty acids and placebo are reported here. RESULTS: During a median follow up of 6.2 years, the incidence of the primary outcome was not significantly decreased among patients receiving n-3 fatty acids, as compared with those receiving placebo (574 patients [9.1%] vs. 581 patients [9.3%]; hazard ratio, 0.98; 95% confidence interval [CI], 0.87 to 1.10; P=0.72). The use of n-3 fatty acids also had no significant effect on the rates of major vascular events (1034 patients [16.5%] vs. 1017 patients [16.3%]; hazard ratio, 1.01; 95% CI, 0.93 to 1.10; P=0.81), death from any cause (951 [15.1%] vs. 964 [15.4%]; hazard ratio, 0.98; 95% CI, 0.89 to 1.07; P=0.63), or death from arrhythmia (288 [4.6%] vs. 259 [4.1%]; hazard ratio, 1.10; 95% CI, 0.93 to 1.30; P=0.26). Triglyceride levels were reduced by 14.5 mg per deciliter (0.16 mmol per liter) more among patients receiving n-3 fatty acids than among those receiving placebo (P<0.001), without a significant effect on other lipids. Adverse effects were similar in the two groups. CONCLUSIONS: Daily supplementation with 1 g of n-3 fatty acids did not reduce the rate of cardiovascular events in patients at high risk for cardiovascular events. (Funded by Sanofi; ORIGIN ClinicalTrials.gov number, NCT00069784.).
Resumo:
The olfactory system is an attractive model to study the genetic mechanisms underlying evolution of the nervous system. This sensory system mediates the detection and behavioural responses to an enormous diversity of volatile chemicals in the environment and displays rapid evolution, as species acquire, modify and discard olfactory receptors and circuits to adapt to new olfactory stimuli. Drosophilids provide an attractive model to study these processes. The availability of 12 sequenced genomes of Drosophila species occupying diverse ecological niches provides a rich resource for genomic analyses. Moreover, one of these species, Drosophila melanogaster, is amenable to a powerful combination of genetic and electrophysiological analyses. D. melanogaster has two distinct families of olfactory receptors to detect odours, the well-characterised Odorant Receptors (ORs) and the recently identified lonotropic Receptors (IRs). In my thesis, I have provided new insights into the genetic mechanisms underlying olfactory system evolution through three distinct, but interrelated projects. First, I performed a comparative genomic analysis of the IR repertoire in 12 sequenced Drosophila species, which has revealed that the olfactory IRs are highly conserved across species. By contrast, a large fraction of IRs that are not expressed in the olfactory system - and which may be gustatory receptors - are much more variable in sequence and gene copy number. Second, to identify ligands for IR expressing olfactory sensory neurons, I have performed an electrophysiological screen in D. melanogaster using a panel of over 160 odours. I found that the IRs respond to a number of amines, aldehydes and acids, contrasting with the chemical specificity of the OR repertoire, which is mainly tuned to esters, alcohols and ketones. Finally, the identification of ligands for IRs in this species allowed me to investigate in detail the molecular and functional evolution of a tandem array of IRs, IR75a/IR75b/IR75c, in D. sechellia. This species is endemic to the Seychelles archipelago and highly specialised to breed on the fruits of Morinda citrifolia, which is repulsive and toxic for other Drosophila species. These studies led me to discover that receptor loss, changes in receptor specificity and changes in receptor expression have likely played an important role during the evolution of these IRs in D. sechellia. These changes may explain, in part, the unique chemical ecology of this species. - Le système olfactif est un excellent modèle pour étudier les mécanismes génétiques impliqués dans l'étude de l'évolution du système nerveux. Ce système sensoriel permet la détection de nombreux composés volatils présents dans l'environnement et est à la base des réponses comportementales. Il est propre à chaque espèce et évolue rapidement en modifiant ou en éliminant des récepteurs et leurs circuits olfactifs correspondants pour s'adapter à de nouvelles odeurs. Pour étudier le système olfactif et son évolution, nous avons décidé d'utiliser la drosophile comme modèle. Le séquençage complet de 12 souches de drosophiles habitant différentes niches écologiques permet une analyse génomique conséquente. De plus, l'une de ces espèces Drosophila melanogaster permet la combinaison d'analyses génétiques et électrophysiologiques. En effet, D. melanogaster possède 2 familles distinctes de récepteurs olfactifs qui permettent la détection d'odeurs: les récepteurs olfactifs (ORs) étant les mieux caractérisés et les récepteurs ionotropiques (IRs), plus récemment identifiés. Au cours de ma thèse, j'ai apporté des nouvelles connaissances qui m'ont permis de mieux comprendre les mécanismes génétiques à la base de l'évolution du système olfactif au travers de trois projets différents, mais interdépendants. Premièrement, j'ai réalisé une analyse génomique comparative de l'ensemble des IRs dans les 12 souches de drosophiles séquencées jusqu'à présent. Ceci a montré que les récepteurs olfactifs IRs sont hautement conservés parmi l'ensemble de ces espèces. Au contraire, une grande partie des IRs qui ne sont pas exprimés dans le système olfactif, et qui semblent être des récepteurs gustatifs, sont beaucoup plus variables dans leur séquence et dans le nombre de copie de gènes. Deuxièmement, pour identifier les ligands des récepteurs IRs exprimés par les neurones sensoriels olfactifs, j'ai réalisé une étude électrophysiologique chez D. melanogaster e η testant l'effet de plus de 160 composés chimiques sur les IRs. J'ai trouvé que les IRs répondent à un nombre d'amines, d'aldéhydes et d'acides, contrairement aux récepteurs olfactifs ORs qui eux répondent principalement aux esthers, alcools et cétones. Finalement, l'identification de ligands pour les IRs dans ces espèces m'a permis d'étudier en détail l'évolution fonctionnelle et moléculaire des IR75a/IR75b/IR75c dans D. sechellia. Cette espèce est endémique de l'archipel des Seychelles et se nourrit spécifiquement du fruit Morinda citrifolia qui est répulsif et toxique pour d'autres souches de drosophiles. Ces études m'ont poussé à découvrir que, la perte de IR75a, le changement dans la spécificité de IR75b ainsi que le changement dans l'expression de IR75c ont probablement joué un rôle important dans l'évolution des IRs chez D. sechellia. Ces changements peuvent expliquer, en partie, l'écologie chimique propre à cette espèce. Résumé français large public Le système olfactif permet aux animaux de détecter des milliers de molécules odorantes, les aidant ainsi à trouver de la nourriture, à distinguer si elle est fraîche ou avariée, à trouver des partenaires sexuels, ainsi qu'à éviter les prédateurs. Selon l'environnement et le mode de vie des espèces, le système olfactif doit détecter des odeurs très diverses ; en effet, un moustique qui recherche du sang humain pour se nourrir doit détecter des odeurs bien différentes d'une abeille qui recherche des fleurs. Dans ma thèse, j'ai essayé de comprendre comment les systèmes olfactifs d'une espèce évoluent pour s'adapter aux exigences induites par son environnement. Un très bon modèle pour étudier cela est la drosophile dont les différentes espèces se nichent dans des habitats très divers. Pour ce faire, j'ai étudié les récepteurs olfactifs de différentes espèces de la drosophile. Ces récepteurs sont des protéines qui se lient à des odeurs spécifiques. Lorsqu'ils se lient, ils activent un neurone qui envoie un signal électrique au cerveau. Ce signal est ensuite traité par ce dernier qui indique à la mouche si l'odeur est attractive ou répulsive. J'ai identifié les récepteurs olfactifs de plusieurs espèces de drosophile et étudié s'il y avait des différences entre elles. La plupart des récepteurs sont similaires entre les espèces, cependant dans l'une d'entre elles, certains récepteurs sont différents. Ce fait est particulièrement intéressant car cette espèce de drosophile se nourrit de fruits que les autres espèces n'apprécient pas. Comme nous ne savons pas quels récepteurs se lient à quelles odeurs, j'ai testé un grand nombre de composants odorants. Ceci m'a permis de constater que, effectivement, certains changements produits dans ces récepteurs expliquent pourquoi cette espèce aime particulièrement ces fruits. En outre, mes résultats contribuent à mieux comprendre les changements génétiques qui sont impliqués dans l'évolution du système olfactif.
Resumo:
The flux of fatty acids toward beta-oxidation was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate synthesis in the peroxisome from the polymerization, by a bacterial polyhydroxyalkanoate synthase, of the beta-oxidation intermediates 3-hydroxyacyl-CoAs. Synthesis of polyhydroxyalkanoate was dependent on the beta-oxidation enzymes acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase multifunctional protein, which are involved in generating 3-hydroxyacyl-CoAs, and on the peroxin PEX5, which is involved in the import of proteins into the peroxisome. In wild type cells grown in media containing fatty acids, the polyhydroxyalkanoate monomer composition was largely influenced by the nature of the external fatty acid, such that even-chain monomers are generated from oleic acid and odd-chain monomers are generated from heptadecenoic acid. In contrast, polyhydroxyalkanoate containing predominantly 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate was synthesized in a mutant deficient in the peroxisomal 3-ketothiolase (fox3 Delta 0) growing either on oleic acid or heptadecenoic acid as well as in wild type and fox3 Delta 0 mutants grown on glucose or raffinose, indicating that 3-hydroxyacyl-CoAs used for polyhydroxyalkanoate synthesis were generated from the degradation of intracellular short- and medium-chain fatty acids by the beta-oxidation cycle. Inhibition of fatty acid biosynthesis with cerulenin blocked the synthesis of polyhydroxyalkanoate from intracellular fatty acids but still enabled the use of extracellular fatty acids for polymer production. Mutants affected in the synthesis of lipoic acid showed normal polyhydroxyalkanoate synthesis capacity. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed toward the peroxisomal beta-oxidation pathway.
Resumo:
Introduction: The specificity of ethyl glucuronide (EtG) in hair as marker of alcohol consumption exceeds by far those of fatty acid ethyl esters. False positive cases are therefore very rare but not excluded as recent publications have shown. Especially, the use of plant extracts containing high percentages of ethanol can lead to EtG hair concentrations typically found in cases of chronic alcohol consumption. As proposed by Baumgartner et al., a nucleohilic substitution could most likely explain this phenomenon. Fresh and dried plants as well as commercial hair lotions based on plants extracts have been analysed for EtG presence or EtG formation. Methods: Urtica dioica, Plantago lanceolata, Cortex Quercus, Sempervivum, Armoracia rusticana, Juniperus communis, Brassica alba, Thymian vulgaris, Salvia officinalis, Majorana hortensis, Aloe vera, birch gingko and green tea leafs, ginger, lemon grass were extracted in water, water/ethanol (50/50) and ethanol (100%). The extracts as well as diluted hair lotions were measured by immunological test (Microgenics DRI® EtG assay) and by LC-MS/MS on Shimadzu Nexera UHPLC coupled with an AB Sciex 4500 QTrap. Results: EtG could not be detected in water extracts of all tested plants. However, DRI® EtG assay indicated the presence of EtG in 66% of the tested ethanolic plant extracts. That could only be confirmed by mass spectrometry in the cases of fresh thyme as well as in dried birch, oak and plantain extracts where EtG concentrations between of 0.25 and 2,09 mg/l were measured. In one hair lotion, the EtG concentration was 0,76 mg/l. Conclusion: Ethanolic plant extracts represents a non-negligible risk for false positive EtG hair tests, especially when applied as lotion without following washing out. The use of hair care products must therefore be evaluated at every hair sampling. In case of doubt, the product should be analysed by mass spectrometric methods since the presence of EtG can't be proven by use of the DRI® EtG assay, only. Our results support Baumgartner's assumption of a nucleophilic substitution in presence of ethanol because EtG was only measured in the ethanolic extracts.
Resumo:
Stimulation of prostaglandin (PG) release in rat astroglial cultures by various substances, including phorbol esters, melittin, or extracellular ATP, has been reported recently. It is shown here that glucocorticoids (GCs) reduced both basal and stimulated PGD2 release. Hydrocortisone, however, did not inhibit ATP-, calcium ionophore A23187-, or tetradecanoyl phorbol acetate (TPA)-stimulated arachidonic acid release, and only TPA stimulations were affected by dexamethasone. GC-mediated inhibition of PGD2 release thus appeared to exclude regulation at the phospholipase A2 (PLA2) level. Therefore, the effects of GCs on the synthesis of lipocortin I (LC I), a potent, physiological inhibitor of PLA2, were studied in more detail. Dexamethasone was not able to enhance de novo synthesis of LC I in freshly seeded cultures and failed to increase LC I synthesis in 2-3-week-old cultures. It is surprising that LC I was the major LC synthesized in those cultures, and marked amounts accumulated with culture time, reaching plateau levels at approximately day 10. In contrast, LC I was barely detectable in vivo. This tonic inhibition of PLA2 is the most likely explanation for unsuccessful attempts to evoke PG release in astrocyte cultures by various physiological stimuli. GC receptor antagonists (progesterone and RU 38486) given throughout culture time reduced LC I accumulation and simultaneously increased PGD2 release. Nonetheless, a substantial production of LC I persisted in the presence of antagonists. Therefore, LC I induction did not seem to involve GC receptor activation. This was confirmed in serum- and GC-free brain cell aggregate cultures. Here also a marked accumulation of LC I was observed.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are in clinical use for disease detection by MRI. A major advancement would be to link therapeutic drugs to SPIONs in order to achieve targeted drug delivery combined with detection. In the present work, we studied the possibility of developing a versatile synthesis protocol to hierarchically construct drug-functionalized-SPIONs as potential anti-cancer agents. Our model biocompatible SPIONs consisted of an iron oxide core (9-10 nm diameter) coated with polyvinylalcohols (PVA/aminoPVA), which can be internalized by cancer cells, depending on the positive charges at their surface. To develop drug-functionalized-aminoPVA-SPIONs as vectors for drug delivery, we first designed and synthesized bifunctional linkers of varied length and chemical composition to which the anti-cancer drugs 5-fluorouridine or doxorubicin were attached as biologically labile esters or peptides, respectively. These functionalized linkers were in turn coupled to aminoPVA by amide linkages before preparing the drug-functionalized-SPIONs that were characterized and evaluated as anti-cancer agents using human melanoma cells in culture. The 5-fluorouridine-SPIONs with an optimized ester linker were taken up by cells and proved to be efficient anti-tumor agents. While the doxorubicin-SPIONs linked with a Gly-Phe-Leu-Gly tetrapeptide were cleaved by lysosomal enzymes, they exhibited poor uptake by human melanoma cells in culture.
Resumo:
Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.
Resumo:
Fas (CD95/Apo-1) ligand is a potent inducer of apoptosis and one of the major killing effector mechanisms of cytotoxic T cells. Thus, Fas ligand activity has to be tightly regulated, involving various transcriptional and post-transcriptional processes. For example, preformed Fas ligand is stored in secretory lysosomes of activated T cells, and rapidly released by degranulation upon reactivation. In this study, we analyzed the minimal requirements for activation-induced degranulation of Fas ligand. T cell receptor activation can be mimicked by calcium ionophore and phorbol ester. Unexpectedly, we found that stimulation with phorbol ester alone is sufficient to trigger Fas ligand release, whereas calcium ionophore is neither sufficient nor necessary. The relevance of this process was confirmed in primary CD4(+) and CD8(+) T cells and NK cells. Although the activation of protein kinase(s) was absolutely required for Fas ligand degranulation, protein kinase C or A were not involved. Previous reports have shown that preformed Fas ligand co-localizes with other markers of cytolytic granules. We found, however, that the activation-induced degranulation of Fas ligand has distinct requirements and involves different mechanisms than those of the granule markers CD63 and CD107a/Lamp-1. We conclude that activation-induced degranulation of Fas ligand in cytotoxic lymphocytes is differently regulated than other classical cytotoxic granule proteins.
Resumo:
Cytosolic acetyl-CoA is involved in the synthesis of a variety of compounds, including waxes, sterols and rubber, and is generated by the ATP citrate lyase (ACL). Plants over-expressing ACL were generated in an effort to understand the contribution of ACL activity to the carbon flux of acetyl-CoA to metabolic pathways occurring in the cytosol. Transgenic Arabidopsis plants synthesizing the polyester polyhydroxybutyrate (PHB) from cytosolic acetyl-CoA have reduced growth and wax content, consistent with a reduction in the availability of cytosolic acetyl-CoA to endogenous pathways. Increasing the ACL activity via the over-expression of the ACLA and ACLB subunits reversed the phenotypes associated with PHB synthesis while maintaining polymer synthesis. PHB production by itself was associated with an increase in ACL activity that occurred in the absence of changes in steady-state mRNA or protein level, indicating a post-translational regulation of ACL activity in response to sink strength. Over-expression of ACL in Arabidopsis was associated with a 30% increase in wax on stems, while over-expression of a chimeric homomeric ACL in the laticifer of roots of dandelion led to a four- and two-fold increase in rubber and triterpene content, respectively. Synthesis of PHB and over-expression of ACL also changed the amount of the cutin monomer octadecadien-1,18-dioic acid, revealing an unsuspected link between cytosolic acetyl-CoA and cutin biosynthesis. Together, these results reveal the complexity of ACL regulation and its central role in influencing the carbon flux to metabolic pathways using cytosolic acetyl-CoA, including wax and polyisoprenoids.