22 resultados para shear buildings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In animal farming, respiratory disease has been associated with indoor air contaminants and an excess in FEV1 decline. Our aim was to determine the characteristics and risk factors for chronic obstructive pulmonary disease (COPD) in never-smoking European farmers working inside animal confinement buildings. METHODS: A sample of participants in the European Farmers' Study was selected for a cross-sectional study assessing lung function and air contaminants. Dose-response relationships were assessed using logistic regression models. RESULTS: COPD was found in 18 of 105 farmers (45.1 SD 11.7 years) (17.1%); 8 cases (7.6%) with moderate and 3 cases (2.9%) with severe disease. Dust and endotoxin showed a dose-response relationship with COPD, with the highest prevalence of COPD in subjects with high dust (low=7.9%/high=31.6%) and endotoxin exposure (low=10.5%/high=20.0%). This association was statistically significant for dust in the multivariate analysis (OR 6.60, 95% CI 1.10-39.54). CONCLUSION: COPD in never-smoking animal farmers working inside confinement buildings is related to indoor dust exposure and may become severe. [Authors]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geologic structures and metamorphic zonation of the northwestern Indian Himalaya contrast significantly with those in the central and eastern parts of the range, where the high-grade metamorphic rocks of the High Himalayan Crystalline (HHC) thrust southward over the weakly metamorphosed sediments of the Lesser Himalaya along the Main Central Thrust (MCT). Indeed, the hanging wall of the MCT in the NW Himalaya mainly consists of the greenschist facies metasediments of the Chamba zone, whereas HHC high-grade rocks are exposed more internally in the range as a large-scale dome called the Gianbul dome. This Gianbul dome is bounded by two oppositely directed shear zones, the NE-dipping Zanskar Shear Zone (ZSZ) on the northern flank and the SW-dipping Miyar Shear Zone (MSZ) on the southern limb. Current models for the emplacement of the HHC in NW India as a dome structure differ mainly in terms of the roles played by both the ZSZ and the MSZ during the tectonothermal evolution of the HHC. In both the channel flow model and wedge extrusion model, the ZSZ acts as a backstop normal fault along which the high-grade metamorphic rocks of the HHC of Zanskar are exhumed. In contrast, the recently proposed tectonic wedging model argues that the ZSZ and the MSZ correspond to one single detachment system that operates as a subhorizontal backthrust off of the MCT. Thus, the kinematic evolution of the two shear zones, the ZSZ and the MSZ, and their structural, metamorphic and chronological relations appear to be diagnostic features for discriminating the different models. In this paper, structural, metamorphic and geochronological data demonstrate that the MSZ and the ZSZ experienced two distinct kinematic evolutions. As such, the data presented in this paper rule out the hypothesis that the MSZ and the ZSZ constitute one single detachment system, as postulated by the tectonic wedging model. Structural, metamorphic and geochronological data are used to present an alternative tectonic model for the large-scale doming in the NW Indian Himalaya involving early NE-directed tectonics, weakness in the upper crust, reduced erosion at the orogenic front and rapid exhumation along both the ZSZ and the MSZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Environmental conditions play a crucial role in mite growth, and optimal environmental control is key in the prevention of airway inflammation in chronic allergic rhinoconjunctivitis or asthma. OBJECTIVE: To evaluate the relationship between building energy performance and indoor mite allergen concentration in a cross-sectional study. METHODS: Major allergen concentration (Der f 1, Der p 1, mite group 2, Fel d 1 and Bla g 2) was determined by quantitative dot blot analysis from mattress and carpet dust samples in five buildings designed for low energy use (LEB) and in six control buildings (CB). Inhabitants had received 4 weeks prior to mite measurement a personal validated questionnaire related to the perceived state of health and comfort of living. RESULTS: Cumulative mite allergen concentration (with Der f 1 as the major contributor) was significantly lower in LEB as compared with CB both in mattresses and in carpets. In contrast, the two categories of buildings did not differ in Bla g 2 and Fel d 1 concentration, in the amount of dust and airborne mould collected. Whereas temperature was higher in LEB, relative humidity was significantly lower than in CB. Perceived overall comfort was better in LEB. CONCLUSIONS: Major mite allergen Der f 1 preferentially accumulates in buildings not specifically designed for low energy use, reaching levels at risk for sensitization. We hypothesize that controlled mechanical ventilation present in all audited LEB may favour lower air humidity and hence lower mite growth and allergen concentration, while preserving optimal perceived comfort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gold mineralization of the Hutti Mine is hosted by nine parallel, N - S trending, steeply dipping, 2 - 10 m wide shear zones, that transect Archaean amphibolites. The shear zones were formed after peak metamorphism during retrograde ductile D, shearing in the lower amphibolite facies. They were reactivated in the lower to mid greenschist facies by brittle-ductile D-3 shearing and intense quartz veining. The development of a S-2-S-3 crenulation cleavage facilitates the discrimination between the two deformation events and contemporaneous alteration and gold mineralization. Ductile D, shearing is associated with a pervasively developed distal chlorite - sed cite alteration assemblage in the outer parts of the shear zones and the proximal biotite-plagioclase alteration in the center of the shear zones. D3 is characterized by development of the inner chlorite-K-feldspar alteration, which forms a centimeter-scale alteration halo surrounding the laminated quartz veins and replaces earlier biotite along S-3. The average size of the laminated vein systems is 30-50 m along strike as well as down-dip and 2-6 m in width. Mass balance calculations suggest strong metasomatic changes for the proximal biotite-plagioclase alteration yielding mass and volume increase of ca. 16% and 12%, respectively. The calculated mass and volume changes of the distal chlorite-sericite alteration (ca. 11%, ca. 8%) are lower. The decrease in 6180 values of the whole rock from around 7.5 parts per thousand for the host rocks to 6-7 parts per thousand for the distal chlorite-sericite and the proximal biotite-plagioclase alteration and around 5 parts per thousand for the inner chlorite-K-feldspar alteration suggests hydrothermal alteration during two-stage deformation and fluid flow. The ductile D-2 deformation in the lower amphibolite facies has provided grain scale porosities by microfracturing. The pervasive, steady-state fluid flow resulted in a disseminated style of gold-sulfide mineralization and a penetrative alteration of the host rocks. Alternating ductile and brittle D3 deformation during lower to mid greenschist facies conditions followed the fault-valve process. Ductile creep in the shear zones resulted in a low permeability environment leading to fluid pressure build-up. Strongly episodic fluid advection and mass transfer was controlled by repeated seismic fracturing during the formation of laminated quartz(-gold) veins. The limitation of quartz veins to the extent of earlier shear zones indicate the importance of preexisting anisotropies for fault-valve action and economic gold mineralization. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stability of airborne nanoparticle agglomerates is important for occupational exposure and risk assessment in determining particle size distribution of nanomaterials. In this study, we developed an integrated method to test the stability of aerosols created using different types of nanomaterials. An aerosolization method, that resembles an industrial fluidized bed process, was used to aerosolize dry nanopowders. We produced aerosols with stable particle number concentrations and size distributions, which was important for the characterization of the aerosols' properties. Next, in order to test their potential for deagglomeration, a critical orifice was used to apply a range of shear forces to them. The mean particle size of tested aerosols became smaller, whereas the total number of particles generated grew. The fraction of particles in the lower size range increased, and the fraction in the upper size range decreased. The reproducibility and repeatability of the results were good. Transmission electron microscopy imaging showed that most of the nanoparticles were still agglomerated after passing through the orifice. However, primary particle geometry was very different. These results are encouraging for the use of our system for routine tests of the deagglomeration potential of nanomaterials. Furthermore, the particle concentrations and small quantities of raw materials used suggested that our system might also be able to serve as an alternative method to test dustiness in existing processes.