36 resultados para roof-top wind turbines
Resumo:
Ob sich Musikhören am Arbeitsplatz positiv oder negativ auf die Mitarbeitenden und auf die Arbeit auswirkt, hängt von einer komplexen Kombination von Faktoren ab. Nämlich von der Musik, von der Art der Arbeitstätigkeit, vom Individuum und seiner Persönlichkeit und vom generellen Arbeitskontext.
Resumo:
BACKGROUND: Diplopia related to neurosurgical procedures is often consecutive to oculomotor nerve lesions. We hereby report an oculomotor dysfunction secondary to an orbital roof effraction and its treatment. HISTORY AND SIGNS: Following surgery for a left anterior communicating artery aneurysm, a 45-year-old woman reported vertical diplopia associated with a left orbital hematoma. The diagnosis of third cranial nerve palsy was excluded by orbital imaging which revealed an orbital roof defect with incarceration of the levator palpebrae and superior rectus. THERAPY AND OUTCOME: As neurosurgeons advised against muscle adhesiolysis, diplopia was corrected by a two-step procedure on the oculomotor muscles. We first corrected horizontal and torsional deviations by operating on the healthy eye, before correcting the vertical deviation on the fellow eye. This two-step extraocular muscle surgery allowed restoration of binocular single vision in a useful field of gaze. CONCLUSIONS: Diplopia can occur as a rare orbital complication during neurosurgical procedures. Surgery of extraocular muscles can provide good functional results
Resumo:
Gender-dimorphic species often display a degree of sexual dimorphism in terms of life-history traits, yet little is known about dimorphism in androdioecious plants. Here we investigate sexual dimorphism in an androdioecious population of the wind-pollinated herb Mercurialis annua by comparing the resource allocation strategies of males and hermaphrodites grown under different nutrient-availability and competitive regimes. We found that males displayed smaller aboveground vegetative sizes than did hermaphrodites, but neither soil nutrient availability nor competition had a strong independent effect on their relative sizes. Plants adjusted their relative reproductive investment in response to nutrient availability. Specifically, hermaphrodites increased their reproductive allocation when growing in poor soils, whereas males displayed the opposite response. Finally, hermaphrodites were strongly female biased in their sex allocation, and this was more pronounced in nutrient-poor soils. To conclude, sexual dimorphism in androdioecious M. annua shares many features with dioecious and gynodioecious species, particularly wind-pollinated herbs. However, the direction of sex-allocation reaction norms displayed by hermaphrodites of M. annua differs from that documented for several insect-pollinated gynodioecious species, hinting at the importance of either the pollination mode or the sexual system as a context of selection shaping the reproductive strategy of plants with both male and female functions.
Resumo:
SUMMARY: A top scoring pair (TSP) classifier consists of a pair of variables whose relative ordering can be used for accurately predicting the class label of a sample. This classification rule has the advantage of being easily interpretable and more robust against technical variations in data, as those due to different microarray platforms. Here we describe a parallel implementation of this classifier which significantly reduces the training time, and a number of extensions, including a multi-class approach, which has the potential of improving the classification performance. AVAILABILITY AND IMPLEMENTATION: Full C++ source code and R package Rgtsp are freely available from http://lausanne.isb-sib.ch/~vpopovic/research/. The implementation relies on existing OpenMP libraries.
Resumo:
This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.
Resumo:
The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.
Resumo:
This article summarizes the different stages of research for the development of medical interventions and their specific characteristics in terms of design, population, resources, importance of results and scientific interest. The emphasis is focused on the two final stages of development, the effectiveness and the impact. An example from our own experience is given to illustrate the reduction of the effect of an intervention against malaria in young children at different stages of the development of the intervention, and the parallel decrease of the recognition by the scientific community of the importance of these results.
Resumo:
Soils on gypsum are well known in dry climates, but were very little described in temperate climate, and never in Switzerland. This study aims to describe soils affected by gypsum in temperate climate and to understand their pedogenesis using standard laboratory analyzes performed on ten Swiss soils located on gypsum outcrops. In parallel, phytosociological relevés described the vegetation encountered in gypsiferous grounds. Gypsification process (secondary gypsum enrichment by precipitation) was observed in all soils. It was particularly important in regions where potential evapotranspiration exceed strongly precipitations in summer (central Valais, Chablais under influence of warm wind). Gypsum contents were regularly measured above 20% in deep horizons, and exceeded locally 70%, building a white, indurate horizon. However, the absence of such a gypsic horizon in the top soil hindered the use of gypsosol (according to the Référentiel pédologique, BAIZE & GIRARD 2009), the typical name of soils affected by gypsum, but restricted to dry regions. As all soils had a high content of magnesium carbonates, they were logically classified in the group of DOLOMITOSOLS. However, according to the World Reference Base for Soil Resources (IUSS 2014), five soils can be classified among the Gypsisols, criteria being here less restricting. These soils are characterized by a coarse texture and a particulate brittle structure making a filtering substrate. They allow water to flow easily taking nutrients. They are not retained by clay, which does generally not exceed 1% of the fine material. The saturation of calcium blocks the breakdown of organic matter. Moreover, these soils are often rejuvenated by erosion caused by the rough relief due to gypsum (landslides, sinkholes, cliffs and slopes). Hence, the vegetation is mainly characterized by calcareous and drought tolerant species, with mostly xerothermophilic beech (Cephalanthero-Fagenion) and pine forests (Erico-Pinion sylvestris) in lowlands, or subalpine heathlands (Ericion) and dry calcareous grasslands (Caricion firmae) in higher elevations.
Resumo:
Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, ther¬mal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are con¬trolled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evi¬dence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. This work shows however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt (SJDD) bimodal intrusion, France. This intrusion emplaced ca. 347 Ma ago (IDTIMS U/Pb on zircon) in the Precambrian crust of the Armori- can massif and preserves remarkable sill-like emplacement processes of bimodal mafic-felsic magmas. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built ioppolith. Early m-thick mafic sills (eastern part) form the roof of the intrusion and are homogeneous and fine-grained with planar contacts with neighboring felsic sills; within a minimal 0.8 Ma time span, the system gets warmer (western part). Sills are emplaced by under-accretion under the old east¬ern part, interact and mingle. A striking feature of this younger, warmer part is in-situ differentiation of the mafic sills in the top 40 cm of the layer, which suggests liquids survival in the shallow crust. Rheological and thermal models were performed in order to determine the parameters required to allow this observed in- situ differentiation-accumulation processes. Strong constraints such as total emplacement durations (ca. 0.8 Ma, TIMS date) and pluton thickness (1.5 Km, gravity model) allow a quantitative estimation of the various parameters required (injection rates, incubation time,...). The results show that in-situ differentiation may be achieved in less than 10 years at such shallow depth, provided that: (1) The differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens (eastern part formation in the SJDD intrusion). The latter are emplaced in a very short time (800 years) at high injection rate (0.5 m/y) in order to create a "hot zone" in the shallow crust (incubation time). This implies that nearly 1/3 of the pluton (400m) is emplaced by a subsequent and sustained magmatic activity occurring on a short time scale at the very beginning of the system. (2) Once incubation time is achieved, the calculations show that a small hot zone is created at the base of the sill pile, where new injections stay above their solidus T°C and may interact and differentiate. Extraction of differentiated residual liquids might eventually take place and mix with newly injected magma as documented in active syn-emplacement shear-zones within the "warm" part of the pluton. (3) Finally, the model show that in order to maintain a permanent hot zone at shallow level, injection rate must be of 0.03 m/y with injection of 5m thick basaltic sills eveiy 130yr, imply¬ing formation of a 15 km thick pluton. As this thickness is in contradiction with the one calculated for SJDD (1.5 Km) and exceed much the average thickness observed for many shallow level plutons, I infer that there is no permanent hot zone (or magma chambers) at such shallow level. I rather propose formation of small, ephemeral (10-15yr) reservoirs, which represent only small portions of the final size of the pluton. Thermal calculations show that, in the case of SJDD, 5m thick basaltic sills emplaced every 1500 y, allow formation of such ephemeral reservoirs. The latter are formed by several sills, which are in a mushy state and may interact and differentiate during a short time.The mineralogical, chemical and isotopic data presented in this study suggest a signature intermediate be¬tween E-MORB- and arc-like for the SJDD mafic sills and feeder dykes. The mantle source involved produced hydrated magmas and may be astenosphere modified by "arc-type" components, probably related to a sub¬ducting slab. Combined fluid mobile/immobile trace elements and Sr-Nd isotopes suggest that such subduc¬tion components are mainly fluids derived from altered oceanic crust with minor effect from the subducted sediments. Close match between the SJDD compositions and BABB may point to a continental back-arc setting with little crustal contamination. If so, the SjDD intrusion is a major witness of an extensional tectonic regime during the Early-Carboniferous, linked to the subduction of the Rheno-Hercynian Ocean beneath the Variscan terranes. Also of interest is the unusual association of cogenetic (same isotopic compositions) K-feldspar A- type granite and albite-granite. A-type granites may form by magma mixing between the mafic magma and crustal melts. Alternatively, they might derive from the melting of a biotite-bearing quartz-feldspathic crustal protolith triggered by early mafic injections at low crustal levels. Albite-granite may form by plagioclase cu¬mulate remelting issued from A-type magma differentiation.
Resumo:
This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.