213 resultados para precision metrology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total disc replacement (TDR) clinical success has been reported to be related to the residual motion of the operated level. Thus, accurate measurement of TDR range of motion (ROM) is of utmost importance. One commonly used tool in measuring ROM is the Oxford Cobbometer. Little is known however on its accuracy (precision and bias) in measuring TDR angles. The aim of this study was to assess the ability of the Cobbometer to accurately measure radiographic TDR angles. An anatomically accurate synthetic L4-L5 motion segment was instrumented with a CHARITE artificial disc. The TDR angle and anatomical position between L4 and L5 was fixed to prohibit motion while the motion segment was radiographically imaged in various degrees of rotation and elevation, representing a sample of possible patient placement positions. An experienced observer made ten readings of the TDR angle using the Cobbometer at each different position. The Cobbometer readings were analyzed to determine measurement accuracy at each position. Furthermore, analysis of variance was used to study rotation and elevation of the motion segment as treatment factors. Cobbometer TDR angle measurements were most accurate (highest precision and lowest bias) at the centered position (95.5%), which placed the TDR directly inline with the x-ray beam source without any rotation. In contrast, the lowest accuracy (75.2%) was observed in the most rotated and off-centered view. A difference as high as 4 degrees between readings at any individual position, and as high as 6 degrees between all the positions was observed. Furthermore, the Cobbometer was unable to detect the expected trend in TDR angle projection with changing position. Although the Cobbometer has been reported to be reliable in different clinical applications, it lacks the needed accuracy to measure TDR angles and ROM. More accurate ROM measurement methods need to be developed to help surgeons and researchers assess radiological success of TDRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphogen gradients infer cell fate as a function of cellular position. Experiments in Drosophila embryos have shown that the Bicoid (Bcd) gradient is precise and exhibits some degree of scaling. We present experimental results on the precision of Bcd target genes for embryos with a single, double or quadruple dose of bicoid demonstrating that precision is highest at mid-embryo and position dependent, rather than gene dependent. This confirms that the major contribution to precision is achieved already at the Bcd gradient formation. Modeling this dynamic process, we investigate precision for inter-embryo fluctuations in different parameters affecting gradient formation. Within our modeling framework, the observed precision can only be achieved by a transient Bcd profile. Studying different extensions of our modeling framework reveals that scaling is generally position dependent and decreases toward the posterior pole. Our measurements confirm this trend, indicating almost perfect scaling except for anterior most expression domains, which overcompensate fluctuations in embryo length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1mm. Estimates of relative co-registration error were <1.5mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In decision making, speed-accuracy trade-offs are well known and often inevitable because accuracy depends on being well informed and gathering information takes time. However, trade-offs between speed and cohesion, that is the degree to which a group remains together as a single entity, as a result of their decision making, have been comparatively neglected. We combine theory and experimentation to show that in decision-making systems, speed-cohesion trade-offs are a natural complement to speed-accuracy trade-offs and are therefore of general importance. We then analyse the decision performance of 32 rock ant, Temnothorax albipennis, colonies in experiments in which accuracy of collective decision making was held constant, but time urgency varied. These experiments reveal for the first time an adaptive speed-cohesion trade-off in collective decision making and how this is achieved. In accord with different time constraints, colonies can decide quickly, at the cost of social unity, or they can decide slowly with much greater cohesion. We discuss the similarity between cohesion and the term precision as used in statistics and engineering. This emphasizes the generality of speed versus cohesion/precision trade-offs in decision making and decision implementation in other fields within animal behaviour such as sexually selected motor displays and even certain aspects of birdsong. We also suggest that speed versus precision trade-offs may occur when individuals within a group need to synchronize their activity, and in collective navigation, cooperative hunting and in certain escape behaviours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report new high-precision U/Pb ages and geochemical data from the Chalten Plutonic Complex to better understand the link between magmatism and tectonics in Southern Patagonia. This small intrusion located in the back-arc region east of the Patagonian Batholith provides important insights on the role of arc migration and subduction erosion. The Chalten Plutonic Complex consists of a suite of calc-alkaline gabbroic to granitic rocks, which were emplaced over 530 kyr between 16.90 +/- 0.05 Ma and 16.37 +/- 0.02 Ma. A synthesis of age and geochemical data from other intrusions in Patagonia reveals (a) striking similarities between the Chalten Plutonic Complex and the Neogene intrusions of the batholith and differences to other back-arc intrusions such as Torres del Paine (b) a distinct E-W trend of calc-alkaline magmatic activity between 20 and 17 Ma. We propose that this trend reflects the eastward migration of the magmatic arc, and the consistent age pattern between the subduction segments north and south of the Chile triple junction suggests a causal relation with a period of fast subduction of the Farallon-Nazca plate during the Early Miocene. Previously proposed flat slab models are not consistent with the present location and morphology of the Southern Patagonian Batholith. We advocate, alternatively, that migration of the magmatic arc is caused by subduction erosion due to the increasing subduction velocities during the Early Miocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Late Variscan volcanic activity is documented in the Late Carboniferous Salvan-Dorenaz sedimentary basin and in the neighboring basement units of the Aiguilles-Rouges and Mont-Blanc crystalline massifs (Western Alps). Precise U/Pb isotopic dating, zircon morphology and geochemical analyses indicate that volcanism occurred during short-lived pulses and that coexisting crustal and mantle sources were involved in the production of melts. Volcanic and subvolcanic products were emplaced along major N-S to NNE-SSW transtensional fracture zones, similar to the ones that governed intense basement exhumation and that favored the formation and filling of the Late Carboniferous Salvan-Dorenaz continental basin. In the Aiguilles-Rouges massif, dacitic flows outcropping at the base of the Salvan-Dorenaz basin erupted at 308 +/- 3 Ma; they represent the surface equivalent of the nearby Vallorcine peraluminous granite and associated rhyolitic dykes (311 +/- 17 Ma). In the Mont Blanc massif, calc-alkaline rhyolitic dykes were emplaced simultaneously (307 +/- 2 Ma) at shallow crustal levels, but they derive from deeper magma sources denoting enhanced mantellic activity. Recently identified tuffs and volcaniclastic layers embedded at different levels of the Salvan-Dorenaz stratigraphic record testify a 295 +3/-4 Ma old episode of highly explosive volcanism from distant volcanic centers, possibly located in the Aar-Gotthard massifs (Central Alps). Their zircon typology is highly heterogeneous. documenting wall-rock contamination of the melts and/or admixture of crustal sediments, whereas consistent subpopulations point to high-temperature magmas of deep-seated origin and alkaline affinity. The dated volcanic layers from the Salvan-Dorenaz basin set the beginning of the detrital sedimentation at 308 +/- 3 Ma and constrain the deposition of 1.5-1.7 km thick of elastic sediments within a time span of 10-15 Ma. These results infer minimum, long-term subsidence rates during basin evolution in the order of >0.1 mm/a, while in the surrounding basement units estimated exhumation rates are in the range of 1 mm/a. All dated rocks contain inherited zircon populations about 350, 450 or 600 Ma old.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To assess the diagnostic accuracy of the Heidelberg Retinal Tomograph 3 (HRT3) as a screening device in comparison with the reference standard of Octopus standard automated perimetry results (SAP) combined with clinical findings. Methods: All patients underwent screening examinations and investigations within a single day. Abnormal screening results were classified as follows: The HRT3: Either "borderline" or "outside normal limits" using the global Moorfields classification (MFC); SAP and clinical exam: A mean defect > 2.4 dB or "outside normal limits" clear text analysis of SAP; and one of the following i) IOP > 21 mmHg, ii) Van Herrick < ¼, iii) cup disc ratio > 0.55, iv) optic nerve head abnormality, v) narrow iridocorneal angle or vi) evidence of peripheral anterior synechiae on gonioscopy. Results: The mean age of the participants was 59.9 years (± 14.8 [21, 91]). Twenty-three subjects (16 %) were classified as abnormal on SAP and clinical exam. The HRT3 classification had a sensitivity of 30 % (95 % CI [16 %, 51 %]) with associated specificity of 58 % (95 % CI [49 %, 66 %]). Of the sixty subjects classified as borderline or outside normal limits with the HRT MFC global result, seven subjects were also abnormal according to SAP and clinical exam. Conclusion: The results suggest that the HRT3 may not be suitable as a sole screening device; however, further investigation is necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13(°) , respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1(°) for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In radionuclide metrology, Monte Carlo (MC) simulation is widely used to compute parameters associated with primary measurements or calibration factors. Although MC methods are used to estimate uncertainties, the uncertainty associated with radiation transport in MC calculations is usually difficult to estimate. Counting statistics is the most obvious component of MC uncertainty and has to be checked carefully, particularly when variance reduction is used. However, in most cases fluctuations associated with counting statistics can be reduced using sufficient computing power. Cross-section data have intrinsic uncertainties that induce correlations when apparently independent codes are compared. Their effect on the uncertainty of the estimated parameter is difficult to determine and varies widely from case to case. Finally, the most significant uncertainty component for radionuclide applications is usually that associated with the detector geometry. Recent 2D and 3D x-ray imaging tools may be utilized, but comparison with experimental data as well as adjustments of parameters are usually inevitable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter presents possible uses and examples of Monte Carlo methods for the evaluation of uncertainties in the field of radionuclide metrology. The method is already well documented in GUM supplement 1, but here we present a more restrictive approach, where the quantities of interest calculated by the Monte Carlo method are estimators of the expectation and standard deviation of the measurand, and the Monte Carlo method is used to propagate the uncertainties of the input parameters through the measurement model. This approach is illustrated by an example of the activity calibration of a 103Pd source by liquid scintillation counting and the calculation of a linear regression on experimental data points. An electronic supplement presents some algorithms which may be used to generate random numbers with various statistical distributions, for the implementation of this Monte Carlo calculation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromogenic immunohistochemistry (IHC) is omnipresent in cancer diagnosis, but has also been criticized for its technical limit in quantifying the level of protein expression on tissue sections, thus potentially masking clinically relevant data. Shifting from qualitative to quantitative, immunofluorescence (IF) has recently gained attention, yet the question of how precisely IF can quantify antigen expression remains unanswered, regarding in particular its technical limitations and applicability to multiple markers. Here we introduce microfluidic precision IF, which accurately quantifies the target expression level in a continuous scale based on microfluidic IF staining of standard tissue sections and low-complexity automated image analysis. We show that the level of HER2 protein expression, as continuously quantified using microfluidic precision IF in 25 breast cancer cases, including several cases with equivocal IHC result, can predict the number of HER2 gene copies as assessed by fluorescence in situ hybridization (FISH). Finally, we demonstrate that the working principle of this technology is not restricted to HER2 but can be extended to other biomarkers. We anticipate that our method has the potential of providing automated, fast and high-quality quantitative in situ biomarker data using low-cost immunofluorescence assays, as increasingly required in the era of individually tailored cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study design: A retrospective study of image guided cervical implant placement precision. Objective: To describe a simple and precise classification of cervical critical screw placement. Summary of Background Data: "Critical" screw placement is defined as implant insertion into a bone corridor which is surrounded circumferentially by neurovascular structures. While the use of image guidance has improved accuracy, there is currently no classification which provides sufficient precision to assess the navigation success of critical cervical screw placement. Methods: Based on postoperative clinical evaluation and CT imaging, the orthogonal view evaluation method (OVEM) is used to classify screw accuracy into grade I (no cortical breach), grade la (screw thread cortical breach), grade II (internal diameter cortical breach) and grade III (major cortical breach causing neural or vascular injury). Grades II and III are considered to be navigation failures, after accounting for bone corridor / screw mismatch (minimal diameter of targeted bone corridor being smaller than an outer screw diameter). Results: A total of 276 screws from 91 patients were classified into grade I (64.9%), grade la (18.1%), and grade II (17.0%). No grade III screw was observed. The overall rate of navigation failure was 13%. Multiple logistic regression indicated that navigational failure was significantly associated with the level of instrumentation and the navigation system used. Navigational failure was rare (1.6%) when the margin around the screw in the bone corridor was larger than 1.5 mm. Conclusions: OVEM evaluation appears to be a useful tool to assess the precision of critical screw placement in the cervical spine. The OVEM validity and reliability need to be addressed. Further correlation with clinical outcomes will be addressed in future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study was to develop a mathematical model (sine model, SIN) to describe fat oxidation kinetics as a function of the relative exercise intensity [% of maximal oxygen uptake (%VO2max)] during graded exercise and to determine the exercise intensity (Fatmax) that elicits maximal fat oxidation (MFO) and the intensity at which the fat oxidation becomes negligible (Fatmin). This model included three independent variables (dilatation, symmetry, and translation) that incorporated primary expected modulations of the curve because of training level or body composition. METHODS: Thirty-two healthy volunteers (17 women and 15 men) performed a graded exercise test on a cycle ergometer, with 3-min stages and 20-W increments. Substrate oxidation rates were determined using indirect calorimetry. SIN was compared with measured values (MV) and with other methods currently used [i.e., the RER method (MRER) and third polynomial curves (P3)]. RESULTS: There was no significant difference in the fitting accuracy between SIN and P3 (P = 0.157), whereas MRER was less precise than SIN (P < 0.001). Fatmax (44 +/- 10% VO2max) and MFO (0.37 +/- 0.16 g x min(-1)) determined using SIN were significantly correlated with MV, P3, and MRER (P < 0.001). The variable of dilatation was correlated with Fatmax, Fatmin, and MFO (r = 0.79, r = 0.67, and r = 0.60, respectively, P < 0.001). CONCLUSIONS: The SIN model presents the same precision as other methods currently used in the determination of Fatmax and MFO but in addition allows calculation of Fatmin. Moreover, the three independent variables are directly related to the main expected modulations of the fat oxidation curve. SIN, therefore, seems to be an appropriate tool in analyzing fat oxidation kinetics obtained during graded exercise.