73 resultados para physically-based model
Resumo:
The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.
Resumo:
Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.
Resumo:
Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R), developed at the University of Lausanne (Switzerland). An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise mainly from the models applied and analysis scale, which are neglecting local controlling factors of debris flow hazard. The presented approach of debris flow hazard analysis, associating automatic detection of the source areas and a simple assessment of the debris flow spreading, provided results for consequent hazard and risk studies. However, for the validation and transferability of the parameters and results to other study areas, more testing is needed.
Resumo:
The Wechsler Intelligence Scale for Children-fourth edition (i.e. WISC-IV) recognizes a four-factor scoring structure in addition to the Full Scale IQ (FSIQ) score: Verbal Comprehension (VCI), Perceptual Reasoning (PRI), Working Memory (WMI), and Processing Speed (PSI) indices. However, several authors suggested that models based on the Cattell-Horn-Carroll (CHC) theory with 5 or 6 factors provided a better fit to the data than does the current four-factor solution. By comparing the current four-factor structure to CHC-based models, this research aimed to investigate the factorial structure and the constructs underlying the WISC-IV subtest scores with French-speaking Swiss children (N = 249). To deal with this goal, confirmatory factor analyses (CFAs) were conducted. Results showed that a CHC-based model with five factors better fitted the French-Swiss data than did the current WISC-IV scoring structure. All together, these results support the hypothesis of the appropriateness of the CHC model with French-speaking children.
Resumo:
The present study constitutes an investigation of tobacco consumption, related attitudes and individual differences in smoking or non-smoking behaviors in a sample of adolescents of different ages in the French-speaking part of Switzerland. We investigated three school-age groups (7th-grade, 9th-grade, and the second-year of high school) for differences in attitude and social and cognitive dimensions. We present both descriptive and inferential statistics. On an inferential level, we present a binary logistic regression-based model predicting risk of smoking. The resulting model most importantly suggests a strong relationship between smoking and alcohol consumption (both regular and sporadic). We interpret this result in terms of both the impact of the actual campaigns and the cognitive processes associated with adolescence.
Resumo:
A major challenge in studying social behaviour stems from the need to disentangle the behaviour of each individual from the resulting collective. One way to overcome this problem is to construct a model of the behaviour of an individual, and observe whether combining many such individuals leads to the predicted outcome. This can be achieved by using robots. In this review we discuss the strengths and weaknesses of such an approach for studies of social behaviour. We find that robots-whether studied in groups of simulated or physical robots, or used to infiltrate and manipulate groups of living organisms-have important advantages over conventional individual-based models and have contributed greatly to the study of social behaviour. In particular, robots have increased our understanding of self-organization and the evolution of cooperative behaviour and communication. However, the resulting findings have not had the desired impact on the biological community. We suggest reasons for why this may be the case, and how the benefits of using robots can be maximized in future research on social behaviour.
Resumo:
Explaining the evolution of sociality is challenging because social individuals face disadvantages that must be balanced by intrinsic benefits of living in a group. One potential route towards the evolution of sociality may emerge from the avoidance of dispersal, which can be risky in some environments. Although early studies found that local competition may cancel the benefits of cooperation in viscous populations, subsequent studies have identified conditions, such as the presence of kin recognition or specific demographic conditions, under which altruism will still spread. Most of these studies assume that the costs of cooperating outweigh the direct benefits (strong altruism). In nature, however, many organisms gain synergistic benefits from group living, which may counterbalance even costly altruistic behaviours. Here, we use an individual based model to investigate how dispersal and social behaviour co-evolve when social behaviours result in synergistic benefits that counterbalance the relative cost of altruism to a greater extent than assumed in previous models. When the cost of cooperation is high, selection for sociality responds strongly to the cost of dispersal. In particular, cooperation can begin to spread in a population when higher cooperation levels become correlated with lower dispersal tendencies within individuals. In contrast, less costly social behaviours are less sensitive to the cost of dispersal. In line with previous studies, we find that mechanisms of global population control also affect this relationship: when whole patches (groups) go extinct each generation, selection favours a relatively high dispersal propensity, and social behaviours evolve only when they are not very costly. If random individuals within groups experience mortality each generation to maintain a global carrying capacity, on the other hand, social behaviours spread and dispersal is reduced, even when the latter is not costly.
Resumo:
The interpretation of the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all crossloadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores.
The international development of the RGHQoL: a quality of life measure for recurrent genital herpes.
Resumo:
This paper describes the international development and psychometric testing of the Recurrent Genital Herpes Quality of Life Questionnaire (RGHQoL), a condition-specific quality of life (QoL) instrument. The theoretical foundation for the measure is the needs-based model of QoL and the content of the instrument was derived from in-depth qualitative interviews with relevant patients in the UK. Versions of the RGHQoL were required for the UK, USA, Italy, Germany, France and Denmark for use in international clinical trials. The results indicate that the final 20 item measure has good reliability, internal consistency and validity for all language versions. A small responsiveness study in Denmark suggested that the measure is sensitive to changes in QoL associated with the initiation of suppression treatment for recurrent genital herpes (RGH). It is concluded that the RGHQoL is a valuable instrument for inclusion in clinical trials. The psychometric properties of the instrument are such that it may also be used to monitor the progress of individual patients.
Resumo:
Learning has been postulated to 'drive' evolution, but its influence on adaptive evolution in heterogeneous environments has not been formally examined. We used a spatially explicit individual-based model to study the effect of learning on the expansion and adaptation of a species to a novel habitat. Fitness was mediated by a behavioural trait (resource preference), which in turn was determined by both the genotype and learning. Our findings indicate that learning substantially increases the range of parameters under which the species expands and adapts to the novel habitat, particularly if the two habitats are separated by a sharp ecotone (rather than a gradient). However, for a broad range of parameters, learning reduces the degree of genetically-based local adaptation following the expansion and facilitates maintenance of genetic variation within local populations. Thus, in heterogeneous environments learning may facilitate evolutionary range expansions and maintenance of the potential of local populations to respond to subsequent environmental changes.
Resumo:
Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.
Resumo:
The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.
Resumo:
Several models have been proposed to understand how so many species can coexist in ecosystems. Despite evidence showing that natural habitats are often patchy and fragmented, these models rarely take into account environmental spatial structure. In this study we investigated the influence of spatial structure in habitat and disturbance regime upon species' traits and species' coexistence in a metacommunity. We used a population-based model to simulate competing species in spatially explicit landscapes. The species traits we focused on were dispersal ability, competitiveness, reproductive investment and survival rate. Communities were characterized by their species richness and by the four life-history traits averaged over all the surviving species. Our results show that spatial structure and disturbance have a strong influence on the equilibrium life-history traits within a metacommunity. In the absence of disturbance, spatially structured landscapes favour species investing more in reproduction, but less in dispersal and survival. However, this influence is strongly dependent on the disturbance rate, pointing to an important interaction between spatial structure and disturbance. This interaction also plays a role in species coexistence. While spatial structure tends to reduce diversity in the absence of disturbance, the tendency is reversed when disturbance occurs. In conclusion, the spatial structure of communities is an important determinant of their diversity and characteristic traits. These traits are likely to influence important ecological properties such as resistance to invasion or response to climate change, which in turn will determine the fate of ecosystems facing the current global ecological crisis.
Resumo:
There is no definite theory yet for the mechanism by which the pattern of epidermal ridges on fingers, palms and soles forming friction ridge skin (FRS) patterns is created. For a long time growth forces in the embryonal epidermis have been believed to be involved in FRS formation. More recent evidence suggests that Merkel cells play an important part in this process as well. Here we suggest a model for the formation of FRS patterns that links Merkel cells to the epidermal stress distribution. The Merkel cells are modeled as agents in an agent based model that move anisotropically where the anisotropy is created by the epidermal stress tensor. As a result ridge patterns are created with pattern defects as they occur in real FRS patterns. As a consequence we suggest why the topology of FRS patterns is indeed unique as the arrangement of pattern defects is sensitive to the initial configuration of Merkel cells.
Resumo:
The Swiss postgraduate training program in general internal medicine is now designed as a competency-based curriculum. In other words, by the end of their training, the residents should demonstrate a set of predefined competences. Many of those competences have to be learnt in outpatient settings. Thus, the primary care physicians have more than ever an important role to play in educating tomorrows doctors. A competency-based model of training requires a regular assessment of the residents. The mini-CEX (mini-Clinical Evaluation eXercise) is the assessment tool proposed by the Swiss institute for postgraduate and continuing education. The mini-CEX is based on the direct observation of the trainees performing a specific task, as well as on the ensuing feedback. This article aims at introducing our colleagues in charge of residents to the mini-CEX, which is a useful tool promoting the culture of feedback in medical education.