285 resultados para metastasis suppressor
Resumo:
SUMMARY LATS2 is a member of the Lats tumour suppressor gene family. The human LATS2 gene is located at chromosome 13q11-12, which has been shown to be a hot spot (67%) for LOH in nonsmall cell lung cancer. Both lats mosaic flies and LATS1 deficient mice spontaneously develop tumours, an observation that is explained by the function of LATS1 in suppressing tumourigenesis by negatively regulating cell proliferation by modulating Cdc2/Cyclin A activity. LATS1 also plays a critical role in maintenance of ploidy through its action on the spindle assembly checkpoint. Initial insights into the function of LATS2 reveals that the protein is involved in the G2/M transition of the cell cycle, whereby it controls the phosphorylation status of Cdc25C. The aim of the present study was to identify LATS2 interacting partners that would provide a more thorough understanding of the molecular pathways in which the protein is involved. The yeast two-hybrid system identified a number of candidate genes that interact with LATS2. Most of the interactions were confirmed biochemically by GST-pull down assays that enabled us to demonstrate that LATS2 is an integral component of the Signalosome complex. The Signalosome is thought to be required for the establishment of functional Cullin-based E3 ubiquitin ligases, the substrate-recognition elements of the ubiquitin-mediated protein proteolytic pathway. The findings that LATS2 also interacts with all of the components of the E3 enzymes allows us to postulate that LATS2 is probably involved in the regulation of this Signalosome-E3 super-complex. In addition, the discovery that LATS2 associates with multiple protein kinases localised at the cellular membrane and in various signalling cascades supports the idea that LATS2 functions as an integrator of signals which allows it to monitor the activity of these pathways and translate these signals through its action on the Signalosome. Furthermore, the observation that a kinase-dead LATS2 mutant arrests at the G2/M phase of the cell cycle, demonstrates that the protein, through the action of its kinase domain, is crucial for progression through the cell cycle, an action in accordance to its proposed role as a regulator of E3 ubiquitin ligases. The findings presented herein provide evidence that LATS2 associates with the Signalosome-E3 ubiquitin ligases super-complex which governs protein stability. Any alteration of the protein would have a strong impact on pathways that modulate cell proliferation, as shown by its implication in tumourigenesis. RESUME LATS2 est un membre de la famille de gènes suppresseurs de tumeurs LATS. Le gène humain LATS2 est situé sur le chromosome 13q11-12, une région qui s'est avérée être un point sensible (67%) dans la perte d'hétérozigosité (LOH) notamment pour le cancer du poumon. Le fait que des tumeurs se développent spontanément chez les souris qui sont déficientes pour le gène LATS1 ainsi que dans des cellules mutantes pour LATS chez la Drosophile, est expliqué Par la fonction de LATS1, qui est de supprimer l'apparition de tumeurs en réprimant la prolifération cellulaire à travers sa capacité à réguler l'activité de Cdc2/Cyciine A. LATS1 joue également un rôle important au niveau du maintient de la ploïdie de la cellule, au travers de son action sur les points de contrôle de l'assemblage du fuseau mitotique. Les premières études du gène LATS2 indiquent que la protéine est, par son contrôle des réactions de phosphorylation de la Cdc25C, impliquée dans la transition 021M. Le but de cette étude était d'identifier les protéines qui interagissent avec LATS2, en vue d'obtenir une compréhension plus approfondie des mécanismes moléculaires dans lesquels LATS2 se trouve engagée. Le système de double-hybride chez la levure a permis l'identification d'un grand nombre de gènes qui interagissent avec LATS2. La plupart des interactions ont été confirmées par GST «pull clown», une technique in vitro qui a permis de démontrer que LATS2 est un composant intégral du Signalosome. Ce complexe est supposé réguler l'activité des E3 ubiquitine-rigases, les éléments responsables du recrutement des substrats qui doivent être recyclés par la voie de dégradation ubiquitine-dépendante. Les résultats obtenus indiquent également que LATS2 interagit avec tous les composants des enzymes E3, ce qui nous permet de soumettre l'idée selon laquelle la protéine LATS2 est en fait impliquée dans la régulation du complexe Signalosorne-E3. De plus, la découverte que LATS2 se trouve associée à plusieurs protéines kinases localisées au niveau de la membrane cellulaire, ainsi que dans diverses voies de transduction, confirment l'idée que LATS2 fonctionne en tant que molécule qui intègre les signaux en provenance de ces différentes voies cellulaires. De ce fait, il lui serait possible de coordonner la destruction des protéines au moyen du complexe Signalosome, permettant ainsi de réprimer l'activité des voies de signalisation. En outre, l'introduction d'une mutation dans le domaine kinase de LATS2 résulte en l'arrêt du cycle cellulaire en G2/M, ce qui montre que la protéine, au travers de son domaine kinase, est cruciale pour le bon fonctionnement du cycle cellulaire, ceci en accord avec son rôle proposé comme régulateur des E3 ubiquitine-ligases. Les résultats présentés dans ce manuscrit démontrent que la protéine LATS2 se trouve associée au complexe Signalosome-E3 qui régule la dégradation des protéines. La moindre modification de la protéine engendrerait des répercussions importantes au niveau des voies de transduction qui contrôlent fa prolifération ceilulaire, ce qui atteste du rôle déterminant que joue LAT32 dans la tumorigénèse.
Resumo:
The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function. Cancer Res; 72(22); 5721-32. ©2012 AACR.
Resumo:
In contrast to other cell cycle inhibitors, the tumor suppressor p16Ink4a is not detectable or expressed at very low levels in embryonic and adult mouse tissues, and therefore it has often been considered as a specialized checkpoint protein that does not participate in the control of normal cell cycle progression. However, Ink4a-/- mice possess increased thymus size and cellularity, thus suggesting the involvement of p16(Ink4a) in the control of thymocyte proliferation. In this study, we found increased numbers of CD8 and CD4 T lymphocytes in thymus and spleen from Ink4a-/- mice. Unexpectedly, this was not related to an increase in T-cell division rates, which were similar in lymphoid organs of Ink4a-/- and wild-type mice. In contrast, T-cell apoptosis rates were significantly decreased in thymus and spleen from Ink4a-/- mice. Moreover, whereas p16Ink4a-deficient and wild-type T cells were equally sensitive to Fas or TCR-mediated apoptosis, the former were clearly more resistant to apoptosis induced by oxidative stress or gamma irradiation. Our results indicate that p16Ink4a function is associated with T-cell apoptosis, and subsequently contributes to the control of T-cell population size in lymphoid organs.
Resumo:
Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays.
Resumo:
To study the postulated mutant p53 (mutp53) "gain of function" effects in mammary tumor development, progression and metastasis, we crossed SV40 transgenic WAP-T mice with mutant p53 transgenic WAP-mutp53 mice. Compared to tumors in monotransgenic WAP-T mice, tumors in bitransgenic WAP-T x WAP-mutp53 mice showed higher tumor grading, enhanced vascularization, and significantly increased metastasis. Bitransgenic tumors revealed a gene signature associated with the oncogenic epithelial-mesenchymal transition pathway (EMT gene signature). In cultures of WAP-T tumor-derived G-2 cancer cells, which are comprised of subpopulations displaying "mesenchymal" and "epithelial" phenotypes, this EMT gene signature was associated with the "mesenchymal" compartment. Furthermore, ectopic expression of mutp53 in G-2 cells sufficed to induce a strong EMT phenotype. In contrast to these in vitro effects, monotransgenic and bitransgenic tumors were phenotypically similar suggesting that in vivo the tumor cell phenotype might be under control of the tumor microenvironment. In support, orthotopic transplantation of G-2 cells as well as of G-2 cells expressing ectopic mutp53 into syngeneic mice resulted in tumors with a predominantly epithelial phenotype, closely similar to that of endogenous primary tumors. We conclude that induction of an EMT gene signature by mutp53 in bitransgenic tumors primarily promotes tumor cell plasticity, that is, the probability of tumor cells to undergo EMT processes under appropriate stimuli, thereby possibly increasing their potential to disseminate and metastasize.
Resumo:
Understanding the molecular aberrations involved in the development and progression of metastatic melanoma (MM) is essential for a better diagnosis and targeted therapy. We identified breast cancer suppressor candidate-1 (BCSC-1) as a novel tumor suppressor in melanoma. BCSC-1 expression is decreased in human MM, and its ectopic expression in MM-derived cell lines blocks tumor formation in vivo and melanoma cell proliferation in vitro while increasing cell migration. We demonstrate that BCSC-1 binds to Sox10, which down regulates MITF, and results in a switch of melanoma cells from a proliferative to a migratory phenotype. In conclusion, we have identified BCSC-1 as a tumor suppressor in melanoma and as a novel regulator of the MITF pathway.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
Cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy
Resumo:
Imaging mass spectrometry (IMS) represents an innovative tool in the cancer research pipeline, which is increasingly being used in clinical and pharmaceutical applications. The unique properties of the technique, especially the amount of data generated, make the handling of data from multiple IMS acquisitions challenging. This work presents a histology-driven IMS approach aiming to identify discriminant lipid signatures from the simultaneous mining of IMS data sets from multiple samples. The feasibility of the developed workflow is evaluated on a set of three human colorectal cancer liver metastasis (CRCLM) tissue sections. Lipid IMS on tissue sections was performed using MALDI-TOF/TOF MS in both negative and positive ionization modes after 1,5-diaminonaphthalene matrix deposition by sublimation. The combination of both positive and negative acquisition results was performed during data mining to simplify the process and interrogate a larger lipidome into a single analysis. To reduce the complexity of the IMS data sets, a sub data set was generated by randomly selecting a fixed number of spectra from a histologically defined region of interest, resulting in a 10-fold data reduction. Principal component analysis confirmed that the molecular selectivity of the regions of interest is maintained after data reduction. Partial least-squares and heat map analyses demonstrated a selective signature of the CRCLM, revealing lipids that are significantly up- and down-regulated in the tumor region. This comprehensive approach is thus of interest for defining disease signatures directly from IMS data sets by the use of combinatory data mining, opening novel routes of investigation for addressing the demands of the clinical setting.
Resumo:
RESUME En Amérique Centrale et en Amérique du Sud, la leishmaniose cutanéo-muqueuse (LCM) est provoquée par le protozoaire Leishmania du sous-genre Viannia dont font partie L. (V.) braziliensis, L. (V.) panamensis et L. (V.) guyanensis. Dans la LCM, après guérison apparente de la lésion primitive, des lésions secondaires peuvent apparaître dues à la migration de l'infection à partir du site d'inoculation vers les muqueuses de l'ororhino-pharynx. Ce type de dissémination, communément appelé métastase, peut se produire plusieurs années après la guérison de la lésion cutanée initiale, et est un facteur majeur contribuant à la morbidité associée à la LCM. L'expression reproductible de l'activité métastatique au sein de populations discrètes de leishmanies chez le hamster fournit un modèle expérimental permettant d'étudier le degré de virulence du parasite. Nous avons utilisé des clones de L. (V.) guyanensis présentant des phénotypes stables allant d'un caractère hautement métastatique (M+) à non-métastatique (M-) comme outils pour mettre en évidence des facteurs spécifiques liés à la métastase chez les leishmanies du Nouveau Monde. Des analyses protéomiques comparatives utilisant l'électrophorèse bidimensionnelle sur gel de polyacrylamide couplée à de la spectrométrie de masse ont permis l'identification de plusieurs formes de la tryparedoxine peroxidase (TXNPx) en tant que polypeptides associés au phénotype métastatique. TXNPx, une enzyme de la famille des peroxiredoxines (Prxs), protéines antioxydantes, fonctionne comme la dernière peroxydase d'une cascade d'oxydoréductases qui réduit le peroxyde d'hydrogène aux dépens de NADPH. Toutes les Prxs sont caractérisées par un (1-Cys Prx) ou par deux résidus cystéines (2-Cys Prx), respectivement placés dans un environnement structurel conservé de la protéine et sont centrales dans la réaction catalytique. Des immuno-empreintes (« immunoblotting ») ont révélé que TXNPx est présente sous forme dimérique dans les promastigotes (M+) alors que dans les promastigotes, (M-) TXNPx est présente sous forme monomérique et dimérique. Cette caractéristique spécifique de dimérisation pourrait expliquer les différentes activités enzymatiques observées entre les deux promastigotes (M+) et (M-) en présence de peroxyde d'hydrogène ainsi que leur différence de survie et de charge parasitaire à l'intérieur des macrophages. Par conséquent, le processus métastatique pourrait être lié à la capacité du parasite à échapper efficacement aux défenses microbicides de la cellule hôte. ABSTRACT In South and Central America, protozoan parasites of the Leishmania Viannia subgenus including L. (V.) braziliensis, L. (V.) guyanensis and L. (V). panamensis cause mucocutaneous leishmaniasis (MCL). In MCL, after apparent cure of the primary lesion, secondary lesions may appear in the nasopharyngeal tissues of the infected host due to dissemination of the infection from the inoculation site. This type of dissemination, known as metastasis, can occur several years after healing of the original cutaneous lesion, and is a major contributory factor to the morbidity associated with MCL. The reproducible expression of metastasis by discrete populations of Leishmania parasites in hamsters provides an experimental model to examine the expression of parasite virulence. We used laboratory clones of L. (V.) guyanensis with stable phenotypes ranging from highly metastatic (M+) to non-metastatic (M-) as tools for the discovery of specific factors associated with metastasis in New World Leishmania species. Comparative proteome analyses via 2D-electrophoresis (2-DE) coupled with mass spectrometry (MS) enabled the identification of various isoforms of tryparedoxin peroxidase (TXNPx) as polypeptides associated with the metastatic phenotype. TXNPx, an enzyme related to the antioxidant peroxiredoxin family (Prx) functions as the terminal peroxidase of a redox cascade that reduces hydroperoxides by NADPH. All Prxs are characterized by one (1-Cys Prx) or two cysteine residue(s) (2-Cys Prx), respectively, located in a conserved structural environment of the protein which are central for the catalytic reaction. Immunoblotting analysis revealed that, under non-reducing denaturing conditions, TXNPx is present in dimeric forms in (M+) promastigotes, whereas in (M-) promastigotes, both monomeric and dimeric forms are found. This specific dimerization feature may explain the different enzymatic activities of both (M+) and (M-) promastigote parasites in the presence of H2O2 and their difference in survival and parasite load inside macrophages. Therefore, the metastatic process could be related to the ability of the parasite to efficiently evade the microbicidal effect of the host cell.
Resumo:
Transcriptional deregulation in cancer has been shown to be associated with epigenetic alterations, in particular to tumor-suppressor- gene (TSG) promoters. In contrast, DNA methylation of TSGs is not considered to be present in normal differentiated cells. Nevertheless, we previously showed that the promoter of the tumor-suppressor gene APC is methylated, for one allele only, in normal gastric cells. Recently, RASSF1A has been shown to be imprinted in normal human placenta. To clarify putative TSG methylation in the placenta, 23 normal placental tissues from the first trimester, both decidua and villi, and four normal non-gestational endometrium were screened for DNA methylation by methylation-sensitive single-strand conformation analysis (MS-SSCA) and sequencing after bisulfite modification, on a panel of 12 genes known to be implicated in carcinogenesis. In all placental villi, four TSG promoters-APC, SFRP2, RASSF1A and WIF1-were hypermethylated, whereas all decidua and normal endometrium did not show any methylation. Allele-specific methylation analysis revealed that this methylation was monoallelic. Furthermore, comparison with maternal DNA indicated that APC and WIF1 were methylated on the maternal allele, whereas SFRP2 was methylated on the paternal allele. Sequence analysis of WIF1 mRNA revealed that only the unmethylated paternal allele was transcribed. The imprinting status of these TSGs is conserved during pregnancy. These results indicate that TSG imprinting is pre-existent in normal human placenta and should not be confused with carcinogenesis or pathology-induced methylation.
Resumo:
Radiotherapy is widely used to treat human cancer. Patients locally recurring after radiotherapy, however, have increased risk of metastatic progression and poor prognosis. The clinical management of postradiation recurrences remains an unresolved issue. Tumors growing in preirradiated tissues have an increased fraction of hypoxic cells and are more metastatic, a condition known as tumor bed effect. The transcription factor hypoxia inducible factor (HIF)-1 promotes invasion and metastasis of hypoxic tumors, but its role in the tumor bed effect has not been reported. Here, we show that tumor cells derived from SCCVII and HCT116 tumors growing in a preirradiated bed, or selected in vitro through repeated cycles of severe hypoxia, retain invasive and metastatic capacities when returned to normoxia. HIF activity, although facilitating metastatic spreading of tumors growing in a preirradiated bed, is not essential. Through gene expression profiling and gain- and loss-of-function experiments, we identified the matricellular protein CYR61 and alphaVbeta5 integrin as proteins cooperating to mediate these effects. The anti-alphaV integrin monoclonal antibody 17E6 and the small molecular alphaVbeta3/alphaVbeta5 integrin inhibitor EMD121974 suppressed invasion and metastasis induced by CYR61 and attenuated metastasis of tumors growing within a preirradiated field. These results represent a conceptual advance to the understanding of the tumor bed effect and identify CYR61 and alphaVbeta5 integrin as proteins that cooperate to mediate metastasis. They also identify alphaV integrin inhibition as a potential therapeutic approach for preventing metastasis in patients at risk for postradiation recurrences.
Resumo:
Uveal melanoma is associated with a high mortality rate once metastases occur, with over >90% of metastatic patients dying within less than 1 year from metastases to the liver. The intraarterial hepatic (iah) administration of the alkylating agent fotemustine holds some promise with response rates of 36% and median survival of 15 months. Here, we investigated whether the DNA-repair-protein MGMT may be involved in the variability of response to fotemustine and temozolomide in uveal melanoma. Epigenetic inactivation of MGMT has been demonstrated to be a predictive marker for benefit from alkylating agent therapy in glioblastoma. We found a methylated MGMT promoter in 6% of liver metastases from 34 uveal melanoma patients. The mean MGMT activity measured in liver metastases with negligible liver tissue content was significantly lower than in liver tissue (146 versus 523 fmol/mg protein, p = 0.002). Expression of the MGMT protein was detectable in 50% of 88 metastases by immunohistochemistry on a tissue microarray. Expression was heterogeneous, and in accordance with MGMT activity data, usually lower than in the surrounding liver. Differential MGMT activity/expression between metastasis and liver tissue and more efficient depletion of MGMT with higher doses of alkylating agent therapy using iah delivery may provide the pharmacologic window for the higher response rate. However, these results do not support MGMT methylation status or protein expression as predictive markers for treatment outcome to iah chemotherapy with alkylating agents.