64 resultados para indoor radon
Resumo:
Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers' or consumers' health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/ SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.
Resumo:
In European countries and North America, people spend 80 to 90% of time inside buildings and thus breathe indoor air. In Switzerland, special attention has been devoted to the 16 stations of the national network of observation of atmospheric pollutants (NABEL). The results indicate a reduction in outdoor pollution over the last ten years. With such a decrease in pollution over these ten years the question becomes: how can we explain an increase of diseases? Indoor pollution can be the cause. Indoor contaminants that may create indoor air quality (IAQ) problems come from a variety of sources. These can include inadequate ventilation, temperature and humidity dysfunction, and volatile organic compounds (VOCs). The health effects from these contaminants are varied and can range from discomfort, irritation and respiratory diseases to cancer. Among such contaminants, environmental tobacco smoke (ETS) could be considered the most important in terms of both health effects and engineering controls of ventilation. To perform indoor pollution monitoring, several selected ETS tracers can be used including carbon monoxide (CO), carbon dioxide (CO2), respirable particles (RSP), condensate, nicotine, polycyclic aromatic hydrocarbons (PAHs), nitrosamines, etc. In this paper, some examples are presented of IAQ problems that have occurred following the renewal of buildings and energy saving concerns. Using industrial hygiene sampling techniques and focussing on selected priority pollutants used as tracers, various problems have been identified and solutions proposed. [Author]
Resumo:
A majority of smokers and non-smokers mind tobacco smoke. Passive smoking causes death by sudden infant death, lung cancer and coronary heart disease. 3000 to 6000 persons are killed every year in France. The lack of implementation of the Evin's law published in 1991 explains why non-smokers are not given the protection they can expect. The trend of scientific knowledge and of French and international public opinions support a growing demand for a complete protection of non-smokers with a total ban of smoking in all public or working places.
Resumo:
BACKGROUND: In contrast with established evidence linking high doses of ionizing radiation with childhood cancer, research on low-dose ionizing radiation and childhood cancer has produced inconsistent results. OBJECTIVE: We investigated the association between domestic radon exposure and childhood cancers, particularly leukemia and central nervous system (CNS) tumors. METHODS: We conducted a nationwide census-based cohort study including all children < 16 years of age living in Switzerland on 5 December 2000, the date of the 2000 census. Follow-up lasted until the date of diagnosis, death, emigration, a child's 16th birthday, or 31 December 2008. Domestic radon levels were estimated for each individual home address using a model developed and validated based on approximately 45,000 measurements taken throughout Switzerland. Data were analyzed with Cox proportional hazard models adjusted for child age, child sex, birth order, parents' socioeconomic status, environmental gamma radiation, and period effects. RESULTS: In total, 997 childhood cancer cases were included in the study. Compared with children exposed to a radon concentration below the median (< 77.7 Bq/m3), adjusted hazard ratios for children with exposure ≥ the 90th percentile (≥ 139.9 Bq/m3) were 0.93 (95% CI: 0.74, 1.16) for all cancers, 0.95 (95% CI: 0.63, 1.43) for all leukemias, 0.90 (95% CI: 0.56, 1.43) for acute lymphoblastic leukemia, and 1.05 (95% CI: 0.68, 1.61) for CNS tumors. CONCLUSIONS: We did not find evidence that domestic radon exposure is associated with childhood cancer, despite relatively high radon levels in Switzerland.
Resumo:
This study investigated the contribution of sources and establishment characteristics, on the exposure to fine particulate matter (PM(2.5)) in the non-smoking sections of bars, cafes, and restaurants in central Zurich. PM(2.5)-exposure was determined with a nephelometer. A random sample of hospitality establishments was investigated on all weekdays, from morning until midnight. Each visit lasted 30 min. Numbers of smokers and other sources, such as candles and cooking processes, were recorded, as were seats, open windows, and open doors. Ambient air pollution data were obtained from public authorities. Data were analysed using robust MM regression. Over 14 warm, sunny days, 102 establishments were measured. Average establishment PM(2.5) concentrations were 64.7 microg/m(3) (s.d. = 73.2 microg/m(3), 30-min maximum 452.2 microg/m(3)). PM(2.5) was significantly associated with the number of smokers, percentage of seats occupied by smokers, and outdoor PM. Each smoker increased PM(2.5) on average by 15 microg/m(3). No associations were found with other sources, open doors or open windows. Bars had more smoking guests and showed significantly higher concentrations than restaurants and cafes. Smokers were the most important PM(2.5)-source in hospitality establishments, while outdoor PM defined the baseline. Concentrations are expected to be even higher during colder, unpleasant times of the year. PRACTICAL IMPLICATIONS: Smokers and ambient air pollution are the most important sources of fine airborne particulate matter (PM(2.5)) in the non-smoking sections of bars, restaurants, and cafes. Other sources do not significantly contribute to PM(2.5)-levels, while opening doors and windows is not an efficient means of removing pollutants. First, this demonstrates the impact that even a few smokers can have in affecting particle levels. Second, it implies that creating non-smoking sections, and using natural ventilation, is not sufficient to bring PM(2.5) to levels that imply no harm for employees and non-smoking clients. [Authors]
Resumo:
BACKGROUND: In animal farming, respiratory disease has been associated with indoor air contaminants and an excess in FEV1 decline. Our aim was to determine the characteristics and risk factors for chronic obstructive pulmonary disease (COPD) in never-smoking European farmers working inside animal confinement buildings. METHODS: A sample of participants in the European Farmers' Study was selected for a cross-sectional study assessing lung function and air contaminants. Dose-response relationships were assessed using logistic regression models. RESULTS: COPD was found in 18 of 105 farmers (45.1 SD 11.7 years) (17.1%); 8 cases (7.6%) with moderate and 3 cases (2.9%) with severe disease. Dust and endotoxin showed a dose-response relationship with COPD, with the highest prevalence of COPD in subjects with high dust (low=7.9%/high=31.6%) and endotoxin exposure (low=10.5%/high=20.0%). This association was statistically significant for dust in the multivariate analysis (OR 6.60, 95% CI 1.10-39.54). CONCLUSION: COPD in never-smoking animal farmers working inside confinement buildings is related to indoor dust exposure and may become severe. [Authors]
Resumo:
Nicotine in a smoky indoor air environment can be determined using graphitized carbon black as a solid sorbent in quartz tubes. The temperature stability, high purity, and heat absorption characteristics of the sorbent, as well as the permeability of the quartz tubes to microwaves, enable the thermal desorption by means of microwaves after active sampling. Permeation and dynamic dilution procedures for the generation of nicotine in the vapor phase at low and high concentrations are used to evaluate the performances of the sampler. Tube preparation is described and the microwave desorption temperature is measured. Breakthrough volume is determined to allow sampling at 0.1-1 L/min for definite periods of time. The procedure is tested for the determination of gas and paticulate phase nicotine in sidestream smoke produced in an experimental chamber.
Resumo:
Au printemps 2012, des employés administratifs, ayant récemment emménagé dans un nouveau bâtiment à hautes performances énergétiques, se plaignent de problèmes de santé et de gênes compatibles avec un syndrome du bâtiment malsain. L'employeur a entendu les plaintes des collaborateurs, et choisit une intervention unique, consistant à poser des ouvrants afin de fournir une ventilation naturelle. Parallèlement, il commande à des spécialistes MSST une étude sur l'impact de la mesure sur les plaintes exprimées par les employés. La littérature recommande quant à elle de prendre en charge ce type de problématique de façon itérative, et en abordant de multiples aspects (qualité de l'air, psycho-sociaux, organisationnels). Au vu des nombreuses plaintes de la population, et de la disponibilité de ces données, une analyse détaillée, de cohorte, est proposée dans ce travail de master, dont les objectifs seront de caractériser les plaintes des collaborateurs travaillant dans le bâtiment administratif, de diagnostiquer le type de problématique présent, de déterminer si l'on observe une atténuation des symptômes dans ce bâtiment suite à l'intervention unique de pose des ouvrants, et d'isoler si possible d'autres déterminants d'une évolution favorable ou défavorable de la symptomatologie en présence d'une intervention unique. Une étude de cohorte est menée sur les données récoltées par un questionnaire, basé sur le questionnaire MM40, en mars 2012 (T0) et mars 2013 (T1). La population est décrite, puis des analyses descriptives et par régression logistique sont réalisées. La participation a été importante. Entre T0 et T1, après la pose des ouvrants, le nombre de plaintes et symptômes a diminué, mais la prévalence des plaintes reste importante (odeurs, ventilation, bruit, etc.). Les plaintes et les symptômes mis en évidence sont retrouvés dans la littérature, et sont peu spécifiques à la problématique de ce bâtiment, situé en Suisse. De nouvelles pistes d'intervention sont proposées au vu des résultats trouvés.
Resumo:
We propose a new method, based on inertial sensors, to automatically measure at high frequency the durations of the main phases of ski jumping (i.e. take-off release, take-off, and early flight). The kinematics of the ski jumping movement were recorded by four inertial sensors, attached to the thigh and shank of junior athletes, for 40 jumps performed during indoor conditions and 36 jumps in field conditions. An algorithm was designed to detect temporal events from the recorded signals and to estimate the duration of each phase. These durations were evaluated against a reference camera-based motion capture system and by trainers conducting video observations. The precision for the take-off release and take-off durations (indoor < 39 ms, outdoor = 27 ms) can be considered technically valid for performance assessment. The errors for early flight duration (indoor = 22 ms, outdoor = 119 ms) were comparable to the trainers' variability and should be interpreted with caution. No significant changes in the error were noted between indoor and outdoor conditions, and individual jumping technique did not influence the error of take-off release and take-off. Therefore, the proposed system can provide valuable information for performance evaluation of ski jumpers during training sessions.
Resumo:
Research into the biomechanical manifestation of fatigue during exhaustive runs is increasingly popular but additional understanding of the adaptation of the spring-mass behaviour during the course of strenuous, self-paced exercises continues to be a challenge in order to develop optimized training and injury prevention programs. This study investigated continuous changes in running mechanics and spring-mass behaviour during a 5-km run. 12 competitive triathletes performed a 5-km running time trial (mean performance: 17 min 30 s) on a 200 m indoor track. Vertical and anterior-posterior ground reaction forces were measured every 200 m by a 5-m long force platform system, and used to determine spring-mass model characteristics. After a fast start, running velocity progressively decreased (- 11.6%; P<0.001) in the middle part of the race before an end spurt in the final 400-600 m. Stride length (- 7.4%; P<0.001) and frequency (- 4.1%; P=0.001) decreased over the 25 laps, while contact time (+ 8.9%; P<0.001) and total stride duration (+ 4.1%; P<0.001) progressively lengthened. Peak vertical forces (- 2.0%; P<0.01) and leg compression (- 4.3%; P<0.05), but not centre of mass vertical displacement (+ 3.2%; P>0.05), decreased with time. As a result, vertical stiffness decreased (- 6.0%; P<0.001) during the run, whereas leg stiffness changes were not significant (+ 1.3%; P>0.05). Spring-mass behaviour progressively changes during a 5-km time trial towards deteriorated vertical stiffness, which alters impact and force production characteristics.
Resumo:
[Table des matières] 1. Contexte, objet et modalités de traitement de la saisine. - 2. Préambule. - 3. Caractérisation des parcs de stationnement couverts et de leurs activités professionnelles en France (enquête Afsset). - 4. Observations de terrain et analyse d'activités professionnelles exercées dans les parcs de stationnement couverts (étude Anact). - 5. Evaluation des risques sanitaires. - 6. Recommandations. - Bibliographie. - Annexe 1 : Lettre de saisine. - Annexe 2 : Présentation des positions divergentes. - Annexe 3 : Synthèse des déclarations publiques d'intérêts des experts par rapport au champ de la saisine. - Annexe 4 : Réglementation et recommandations institutionnelles concernant la qualité de l'air dans les parcs de stationnement couverts, et l'hygiène et la sécurité des travailleurs. - Annexe 5 : Etude de coparly sur la mesure de polluants atmosphériques dans les parcs de stationnement - Informations générales. - Annexe 6 : Dépassement des valeurs cibles Afsset" limitant les risques pour la santé des travailleurs dans les parcs de stationnement (Coparly, 2009). - Annexe 7 : Enquête Asset - Méthode d'identification du code NAF le plus adapté. - Annexe 8 : Enquête Afsset - Questionnaire d'enquête. - Annexe 9 : Enquête Afsset - Villes d'implantation des parcs inclus dans l'étude. - Annexe 10 : Rapport de l'Anact : Activité professionnelle et qualité de l'air dans les parcs couverts de stationnement. - Annexe 11 : Résultats de mesures de la campagne du LCPP utilisés pour les scénarios d'exposition. - Annexe 12 : Résultats issus de l'enquête Afsset sur les activités professionnelles exercées dans les parcs de stationnement couverts. - Annexe 13 : Concentrations ubiquitaires dans différents "micro-environnements" (Afsset, 2007). - Annexe 14 : Facteurs d'abattement entre concentrations dans le local d'exploitation et dans le parc. - Annexe 15 : Limites des valeurs toxicologiques de référence (Afsset, 2007). - Annexe 16 : Exemples de solutions pour améliorer la qualité de l'air et réduire l'exposition des travailleurs.
Resumo:
This study introduces a novel approach for automatic temporal phase detection and inter-arm coordination estimation in front-crawl swimming using inertial measurement units (IMUs). We examined the validity of our method by comparison against a video-based system. Three waterproofed IMUs (composed of 3D accelerometer, 3D gyroscope) were placed on both forearms and the sacrum of the swimmer. We used two underwater video cameras in side and frontal views as our reference system. Two independent operators performed the video analysis. To test our methodology, seven well-trained swimmers performed three 300 m trials in a 50 m indoor pool. Each trial was in a different coordination mode quantified by the index of coordination. We detected different phases of the arm stroke by employing orientation estimation techniques and a new adaptive change detection algorithm on inertial signals. The difference of 0.2 +/- 3.9% between our estimation and video-based system in assessment of the index of coordination was comparable to experienced operators' difference (1.1 +/- 3.6%). The 95% limits of agreement of the difference between the two systems in estimation of the temporal phases were always less than 7.9% of the cycle duration. The inertial system offers an automatic easy-to-use system with timely feedback for the study of swimming.
Resumo:
A brief and critical review of the physical and chemical markers of ETS was made as well as the techniques which were used to measure their concentrations in indoor air. Despite the existing data, more investigations and measurements are needed to characterize the exposure to ETS and their health effects.