133 resultados para image noise modeling


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this article was to review the strategies to control patient dose in adult and pediatric computed tomography (CT), taking into account the change of technology from single-detector row CT to multi-detector row CT. First the relationships between computed tomography dose index, dose length product, and effective dose in adult and pediatric CT are revised, along with the diagnostic reference level concept. Then the effect of image noise as a function of volume computed tomography dose index, reconstructed slice thickness, and the size of the patient are described. Finally, the potential of tube current modulation CT is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. SUBJECTS AND METHODS: Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. RESULTS: With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. CONCLUSION: The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Adaptive statistical iterative reconstruction (ASIR) can decrease image noise, thereby generating CT images of comparable diagnostic quality with less radiation. The purpose of this study is to quantify the effect of systematic use of ASIR versus filtered back projection (FBP) for neuroradiology CT protocols on patients' radiation dose and image quality. METHODS: We evaluated the effect of ASIR on six types of neuroradiologic CT studies: adult and pediatric unenhanced head CT, adult cervical spine CT, adult cervical and intracranial CT angiography, adult soft tissue neck CT with contrast, and adult lumbar spine CT. For each type of CT study, two groups of 100 consecutive studies were retrospectively reviewed: 100 studies performed with FBP and 100 studies performed with ASIR/FBP blending factor of 40 %/60 % with appropriate noise indices. The weighted volume CT dose index (CTDIvol), dose-length product (DLP) and noise were recorded. Each study was also reviewed for image quality by two reviewers. Continuous and categorical variables were compared by t test and free permutation test, respectively. RESULTS: For adult unenhanced brain CT, CT cervical myelography, cervical and intracranial CT angiography and lumbar spine CT both CTDIvol and DLP were lowered by up to 10.9 % (p < 0.001), 17.9 % (p = 0.005), 20.9 % (p < 0.001), and 21.7 % (p = 0.001), respectively, by using ASIR compared with FBP alone. Image quality and noise were similar for both FBP and ASIR. CONCLUSION: We recommend routine use of iterative reconstruction for neuroradiology CT examinations because this approach affords a significant dose reduction while preserving image quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The knowledge of the relationship that links radiation dose and image quality is a prerequisite to any optimization of medical diagnostic radiology. Image quality depends, on the one hand, on the physical parameters such as contrast, resolution, and noise, and on the other hand, on characteristics of the observer that assesses the image. While the role of contrast and resolution is precisely defined and recognized, the influence of image noise is not yet fully understood. Its measurement is often based on imaging uniform test objects, even though real images contain anatomical backgrounds whose statistical nature is much different from test objects used to assess system noise. The goal of this study was to demonstrate the importance of variations in background anatomy by quantifying its effect on a series of detection tasks. Several types of mammographic backgrounds and signals were examined by psychophysical experiments in a two-alternative forced-choice detection task. According to hypotheses concerning the strategy used by the human observers, their signal to noise ratio was determined. This variable was also computed for a mathematical model based on the statistical decision theory. By comparing theoretical model and experimental results, the way that anatomical structure is perceived has been analyzed. Experiments showed that the observer's behavior was highly dependent upon both system noise and the anatomical background. The anatomy partly acts as a signal recognizable as such and partly as a pure noise that disturbs the detection process. This dual nature of the anatomy is quantified. It is shown that its effect varies according to its amplitude and the profile of the object being detected. The importance of the noisy part of the anatomy is, in some situations, much greater than the system noise. Hence, reducing the system noise by increasing the dose will not improve task performance. This observation indicates that the tradeoff between dose and image quality might be optimized by accepting a higher system noise. This could lead to a better resolution, more contrast, or less dose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to assess the spatial resolution of a computed tomography (CT) scanner with an automatic approach developed for routine quality controls when varying CT parameters. The methods available to assess the modulation transfer functions (MTF) with the automatic approach were Droege's and the bead point source (BPS) methods. These MTFs were compared with presampled ones obtained using Boone's method. The results show that Droege's method is not accurate in the low-frequency range, whereas the BPS method is highly sensitive to image noise. While both methods are well adapted to routine stability controls, it was shown that they are not able to provide absolute measurements. On the other hand, Boone's method, which is robust with respect to aliasing, more resilient to noise and provides absolute measurements, satisfies the commissioning requirements perfectly. Thus, Boone's method combined with a modified Catphan 600 phantom could be a good solution to assess CT spatial resolution in the different CT planes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L'objectif de ce travail est le développement d'une méthode de caractérisation objective de la qualité d'image s'appliquant à des systèmes de mammographie analogique, utilisant un couple écran-film comme détecteur, et numérique, basé sur une technologie semi-conductrice, ceci en vue de la comparaison de leurs performances. La méthode développée tient compte de la gamme dynamique du détecteur, de la détectabilité de structures de haut contraste, simulant des microcalcifications, et de structures de bas contraste, simulant des opacités (nodules tumoraux). La méthode prend également en considération le processus de visualisation de l'image, ainsi que la réponse de l'observateur. Pour réaliser ceci, un objet-test ayant des propriétés proches de celles d'un sein comprimé, composé de différents matériaux équivalents aux tissus, allant du glandulaire à l'adipeux, et comprenant des zones permettant la simulation de structures de haut et bas contraste, ainsi que la mesure de la résolution et celle du bruit, a été développé et testé. L'intégration du processus de visualisation a été réalisée en utilisant une caméra CCD mesurant directement les paramètres de qualité d'image, à partir de l'image de l'objet-test, dans une grandeur physique commune au système numérique et analogique, à savoir la luminance arrivant sur l'oeil de l'observateur. L'utilisation d'une grandeur synthétique intégrant dans un même temps, le contraste, le bruit et la résolution rend possible une comparaison objective entre les deux systèmes de mammographie. Un modèle mathématique, simulant la réponse d'un observateur et intégrant les paramètres de base de qualité d'image, a été utilisé pour calculer la détectabilité de structures de haut et bas contraste en fonction du type de tissu sur lequel celles-ci se trouvent. Les résultats obtenus montrent qu'à dose égale la détectabilité des structures est significativement plus élevée avec le système de mammographie numérique qu'avec le système analogique. Ceci est principalement lié au fait que le bruit du système numérique est plus faible que celui du système analogique. Les résultats montrent également que la méthodologie, visant à comparer des systèmes d'imagerie numérique et analogique en utilisant un objet-test à large gamme dynamique ainsi qu'une caméra, peut être appliquée à d'autres modalités radiologiques, ainsi qu'à une démarche d'optimisation des conditions de lecture des images.<br/><br/>The goal of this work was to develop a method to objectively compare the performance of a digital and a screen-film mammography system in terms of image quality and patient dose. We propose a method that takes into account the dynamic range of the image detector and the detection of high contrast (for microcalcifications) and low contrast (for masses or tumoral nodules) structures. The method also addresses the problems of image visualization and the observer response. A test object, designed to represent a compressed breast, was constructed from various tissue equivalent materials ranging from purely adipose to purely glandular composition. Different areas within the test object permitted the evaluation of low and high contrast detection, spatial resolution, and image noise. All the images (digital and conventional) were captured using a CCD camera to include the visualization process in the image quality assessment. In this way the luminance reaching the viewer?s eyes can be controlled for both kinds of images. A global quantity describing image contrast, spatial resolution and noise, and expressed in terms of luminance at the camera, can then be used to compare the two technologies objectively. The quantity used was a mathematical model observer that calculates the detectability of high and low contrast structures as a function of the background tissue. Our results show that for a given patient dose, the detection of high and low contrast structures is significantly better for the digital system than for the conventional screen-film system studied. This is mainly because the image noise is lower for the digital system than for the screen-film detector. The method of using a test object with a large dynamic range combined with a camera to compare conventional and digital imaging modalities can be applied to other radiological imaging techniques. In particular it could be used to optimize the process of radiographic film reading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La tomodensitométrie (TDM) est une technique d'imagerie pour laquelle l'intérêt n'a cessé de croitre depuis son apparition au début des années 70. De nos jours, l'utilisation de cette technique est devenue incontournable, grâce entre autres à sa capacité à produire des images diagnostiques de haute qualité. Toutefois, et en dépit d'un bénéfice indiscutable sur la prise en charge des patients, l'augmentation importante du nombre d'examens TDM pratiqués soulève des questions sur l'effet potentiellement dangereux des rayonnements ionisants sur la population. Parmi ces effets néfastes, l'induction de cancers liés à l'exposition aux rayonnements ionisants reste l'un des risques majeurs. Afin que le rapport bénéfice-risques reste favorable au patient il est donc nécessaire de s'assurer que la dose délivrée permette de formuler le bon diagnostic tout en évitant d'avoir recours à des images dont la qualité est inutilement élevée. Ce processus d'optimisation, qui est une préoccupation importante pour les patients adultes, doit même devenir une priorité lorsque l'on examine des enfants ou des adolescents, en particulier lors d'études de suivi requérant plusieurs examens tout au long de leur vie. Enfants et jeunes adultes sont en effet beaucoup plus sensibles aux radiations du fait de leur métabolisme plus rapide que celui des adultes. De plus, les probabilités des évènements auxquels ils s'exposent sont également plus grandes du fait de leur plus longue espérance de vie. L'introduction des algorithmes de reconstruction itératifs, conçus pour réduire l'exposition des patients, est certainement l'une des plus grandes avancées en TDM, mais elle s'accompagne de certaines difficultés en ce qui concerne l'évaluation de la qualité des images produites. Le but de ce travail est de mettre en place une stratégie pour investiguer le potentiel des algorithmes itératifs vis-à-vis de la réduction de dose sans pour autant compromettre la qualité du diagnostic. La difficulté de cette tâche réside principalement dans le fait de disposer d'une méthode visant à évaluer la qualité d'image de façon pertinente d'un point de vue clinique. La première étape a consisté à caractériser la qualité d'image lors d'examen musculo-squelettique. Ce travail a été réalisé en étroite collaboration avec des radiologues pour s'assurer un choix pertinent de critères de qualité d'image. Une attention particulière a été portée au bruit et à la résolution des images reconstruites à l'aide d'algorithmes itératifs. L'analyse de ces paramètres a permis aux radiologues d'adapter leurs protocoles grâce à une possible estimation de la perte de qualité d'image liée à la réduction de dose. Notre travail nous a également permis d'investiguer la diminution de la détectabilité à bas contraste associée à une diminution de la dose ; difficulté majeure lorsque l'on pratique un examen dans la région abdominale. Sachant que des alternatives à la façon standard de caractériser la qualité d'image (métriques de l'espace Fourier) devaient être utilisées, nous nous sommes appuyés sur l'utilisation de modèles d'observateurs mathématiques. Nos paramètres expérimentaux ont ensuite permis de déterminer le type de modèle à utiliser. Les modèles idéaux ont été utilisés pour caractériser la qualité d'image lorsque des paramètres purement physiques concernant la détectabilité du signal devaient être estimés alors que les modèles anthropomorphes ont été utilisés dans des contextes cliniques où les résultats devaient être comparés à ceux d'observateurs humain, tirant profit des propriétés de ce type de modèles. Cette étude a confirmé que l'utilisation de modèles d'observateurs permettait d'évaluer la qualité d'image en utilisant une approche basée sur la tâche à effectuer, permettant ainsi d'établir un lien entre les physiciens médicaux et les radiologues. Nous avons également montré que les reconstructions itératives ont le potentiel de réduire la dose sans altérer la qualité du diagnostic. Parmi les différentes reconstructions itératives, celles de type « model-based » sont celles qui offrent le plus grand potentiel d'optimisation, puisque les images produites grâce à cette modalité conduisent à un diagnostic exact même lors d'acquisitions à très basse dose. Ce travail a également permis de clarifier le rôle du physicien médical en TDM: Les métriques standards restent utiles pour évaluer la conformité d'un appareil aux requis légaux, mais l'utilisation de modèles d'observateurs est inévitable pour optimiser les protocoles d'imagerie. -- Computed tomography (CT) is an imaging technique in which interest has been quickly growing since it began to be used in the 1970s. Today, it has become an extensively used modality because of its ability to produce accurate diagnostic images. However, even if a direct benefit to patient healthcare is attributed to CT, the dramatic increase in the number of CT examinations performed has raised concerns about the potential negative effects of ionising radiation on the population. Among those negative effects, one of the major risks remaining is the development of cancers associated with exposure to diagnostic X-ray procedures. In order to ensure that the benefits-risk ratio still remains in favour of the patient, it is necessary to make sure that the delivered dose leads to the proper diagnosis without producing unnecessarily high-quality images. This optimisation scheme is already an important concern for adult patients, but it must become an even greater priority when examinations are performed on children or young adults, in particular with follow-up studies which require several CT procedures over the patient's life. Indeed, children and young adults are more sensitive to radiation due to their faster metabolism. In addition, harmful consequences have a higher probability to occur because of a younger patient's longer life expectancy. The recent introduction of iterative reconstruction algorithms, which were designed to substantially reduce dose, is certainly a major achievement in CT evolution, but it has also created difficulties in the quality assessment of the images produced using those algorithms. The goal of the present work was to propose a strategy to investigate the potential of iterative reconstructions to reduce dose without compromising the ability to answer the diagnostic questions. The major difficulty entails disposing a clinically relevant way to estimate image quality. To ensure the choice of pertinent image quality criteria this work was continuously performed in close collaboration with radiologists. The work began by tackling the way to characterise image quality when dealing with musculo-skeletal examinations. We focused, in particular, on image noise and spatial resolution behaviours when iterative image reconstruction was used. The analyses of the physical parameters allowed radiologists to adapt their image acquisition and reconstruction protocols while knowing what loss of image quality to expect. This work also dealt with the loss of low-contrast detectability associated with dose reduction, something which is a major concern when dealing with patient dose reduction in abdominal investigations. Knowing that alternative ways had to be used to assess image quality rather than classical Fourier-space metrics, we focused on the use of mathematical model observers. Our experimental parameters determined the type of model to use. Ideal model observers were applied to characterise image quality when purely objective results about the signal detectability were researched, whereas anthropomorphic model observers were used in a more clinical context, when the results had to be compared with the eye of a radiologist thus taking advantage of their incorporation of human visual system elements. This work confirmed that the use of model observers makes it possible to assess image quality using a task-based approach, which, in turn, establishes a bridge between medical physicists and radiologists. It also demonstrated that statistical iterative reconstructions have the potential to reduce the delivered dose without impairing the quality of the diagnosis. Among the different types of iterative reconstructions, model-based ones offer the greatest potential, since images produced using this modality can still lead to an accurate diagnosis even when acquired at very low dose. This work has clarified the role of medical physicists when dealing with CT imaging. The use of the standard metrics used in the field of CT imaging remains quite important when dealing with the assessment of unit compliance to legal requirements, but the use of a model observer is the way to go when dealing with the optimisation of the imaging protocols.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (μCT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D μCT reconstruction (TBSμCT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93μm. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488μm). Relationships between 3D microarchitecture parameters and TBSμCT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBSμCT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711≤r(2)≤0.752) and trabecular number (0.584≤r(2)≤0.648) and negative for trabecular space (-0.407 ≤r(2)≤-0.491), up to a pixel size of 1023μm. In addition, TBSμCT values were strongly correlated between each other (0.77≤r(2)≤0.96). Study results show that the correlations between TBSμCT at 93μm and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, multi-atlas fusion methods have gainedsignificant attention in medical image segmentation. Inthis paper, we propose a general Markov Random Field(MRF) based framework that can perform edge-preservingsmoothing of the labels at the time of fusing the labelsitself. More specifically, we formulate the label fusionproblem with MRF-based neighborhood priors, as an energyminimization problem containing a unary data term and apairwise smoothness term. We present how the existingfusion methods like majority voting, global weightedvoting and local weighted voting methods can be reframedto profit from the proposed framework, for generatingmore accurate segmentations as well as more contiguoussegmentations by getting rid of holes and islands. Theproposed framework is evaluated for segmenting lymphnodes in 3D head and neck CT images. A comparison ofvarious fusion algorithms is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method of objectively determining imaging performance for a mammography quality assurance programme for digital systems was developed. The method is based on the assessment of the visibility of a spherical microcalcification of 0.2 mm using a quasi-ideal observer model. It requires the assessment of the spatial resolution (modulation transfer function) and the noise power spectra of the systems. The contrast is measured using a 0.2-mm thick Al sheet and Polymethylmethacrylate (PMMA) blocks. The minimal image quality was defined as that giving a target contrast-to-noise ratio (CNR) of 5.4. Several evaluations of this objective method for evaluating image quality in mammography quality assurance programmes have been considered on computed radiography (CR) and digital radiography (DR) mammography systems. The measurement gives a threshold CNR necessary to reach the minimum standard image quality required with regards to the visibility of a 0.2-mm microcalcification. This method may replace the CDMAM image evaluation and simplify the threshold contrast visibility test used in mammography quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent years, kernel methods have revealed very powerful tools in many application domains in general and in remote sensing image classification in particular. The special characteristics of remote sensing images (high dimension, few labeled samples and different noise sources) are efficiently dealt with kernel machines. In this paper, we propose the use of structured output learning to improve remote sensing image classification based on kernels. Structured output learning is concerned with the design of machine learning algorithms that not only implement input-output mapping, but also take into account the relations between output labels, thus generalizing unstructured kernel methods. We analyze the framework and introduce it to the remote sensing community. Output similarity is here encoded into SVM classifiers by modifying the model loss function and the kernel function either independently or jointly. Experiments on a very high resolution (VHR) image classification problem shows promising results and opens a wide field of research with structured output kernel methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tractography is a class of algorithms aiming at in vivo mapping the major neuronal pathways in the white matter from diffusion magnetic resonance imaging (MRI) data. These techniques offer a powerful tool to noninvasively investigate at the macroscopic scale the architecture of the neuronal connections of the brain. However, unfortunately, the reconstructions recovered with existing tractography algorithms are not really quantitative even though diffusion MRI is a quantitative modality by nature. As a matter of fact, several techniques have been proposed in recent years to estimate, at the voxel level, intrinsic microstructural features of the tissue, such as axonal density and diameter, by using multicompartment models. In this paper, we present a novel framework to reestablish the link between tractography and tissue microstructure. Starting from an input set of candidate fiber-tracts, which are estimated from the data using standard fiber-tracking techniques, we model the diffusion MRI signal in each voxel of the image as a linear combination of the restricted and hindered contributions generated in every location of the brain by these candidate tracts. Then, we seek for the global weight of each of them, i.e., the effective contribution or volume, such that they globally fit the measured signal at best. We demonstrate that these weights can be easily recovered by solving a global convex optimization problem and using efficient algorithms. The effectiveness of our approach has been evaluated both on a realistic phantom with known ground-truth and in vivo brain data. Results clearly demonstrate the benefits of the proposed formulation, opening new perspectives for a more quantitative and biologically plausible assessment of the structural connectivity of the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MOTIVATION: Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. RESULTS: In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. AVAILABILITY: Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To develop and evaluate a practical method for the quantification of signal-to-noise ratio (SNR) on coronary MR angiograms (MRA) acquired with parallel imaging.Materials and Methods: To quantify the spatially varying noise due to parallel imaging reconstruction, a new method has been implemented incorporating image data acquisition followed by a fast noise scan during which radio-frequency pulses, cardiac triggering and navigator gating are disabled. The performance of this method was evaluated in a phantom study where SNR measurements were compared with those of a reference standard (multiple repetitions). Subsequently, SNR of myocardium and posterior skeletal muscle was determined on in vivo human coronary MRA.Results: In a phantom, the SNR measured using the proposed method deviated less than 10.1% from the reference method for small geometry factors (<= 2). In vivo, the noise scan for a 10 min coronary MRA acquisition was acquired in 30 s. Higher signal and lower SNR, due to spatially varying noise, were found in myocardium compared with posterior skeletal muscle.Conclusion: SNR quantification based on a fast noise scan is a validated and easy-to-use method when applied to three-dimensional coronary MRA obtained with parallel imaging as long as the geometry factor remains low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: We are interested in the numerical simulation of the anastomotic region comprised between outflow canula of LVAD and the aorta. Segmenta¬tion, geometry reconstruction and grid generation from patient-specific data remain an issue because of the variable quality of DICOM images, in particular CT-scan (e.g. metallic noise of the device, non-aortic contrast phase). We pro¬pose a general framework to overcome this problem and create suitable grids for numerical simulations.Methods: Preliminary treatment of images is performed by reducing the level window and enhancing the contrast of the greyscale image using contrast-limited adaptive histogram equalization. A gradient anisotropic diffusion filter is applied to reduce the noise. Then, watershed segmentation algorithms and mathematical morphology filters allow reconstructing the patient geometry. This is done using the InsightToolKit library (www.itk.org). Finally the Vascular Model¬ing ToolKit (www.vmtk.org) and gmsh (www.geuz.org/gmsh) are used to create the meshes for the fluid (blood) and structure (arterial wall, outflow canula) and to a priori identify the boundary layers. The method is tested on five different patients with left ventricular assistance and who underwent a CT-scan exam.Results: This method produced good results in four patients. The anastomosis area is recovered and the generated grids are suitable for numerical simulations. In one patient the method failed to produce a good segmentation because of the small dimension of the aortic arch with respect to the image resolution.Conclusions: The described framework allows the use of data that could not be otherwise segmented by standard automatic segmentation tools. In particular the computational grids that have been generated are suitable for simulations that take into account fluid-structure interactions. Finally the presented method features a good reproducibility and fast application.