91 resultados para hepatic and muscle glycogen


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract :The contraction of the heart or skeletal muscles is mainly due to the propagation, through excitable cells, of an electrical influx called action potential (AP). The AP results from the sequential opening of ion channels that generate inward or outward currents through the cell membrane. Among all the channels involved, the voltage-gated sodium channel is responsible for the rising phase of the action potential. Ten genes encode the different isoforms of these channels (from Nav1.1 to Nav1.9 and an atypical channel named NavX). Nav1.4 and Nav1.5 are the main skeletal muscle and cardiac sodium channels respectively. Their importance for muscle and heart function has been highlighted by the description of mutations in their encoding genes SCN4A and SCNSA. They lead respectively to neuromuscular disorders such as myotonia or paralysis (for Nav1.4), and to cardiac arrhythmias that can deteriorate into sudden cardiac death (for Nav1.5).The general aim of my PhD work has been to study diseases linked with channels dysfunction, also called channelopathies. In that purpose, I investigated the function and the regulation of the muscle and cardiac voltage-gated sodium channels. During the two first studies, I characterized the effects of two mutations affecting Nav1.4 and Nav1.5 function. I used the HEK293 model cells to express wild-type or mutant channels and then studied their biophysical properties with the patch-clamp technique, in whole cell configuration. We found that the SCN4A mutation produced complex alterations of the muscle sodium channel function, that could explain the myotonic phenotype described in patients carrying the mutation. In the second study, the index case was an heterozygous carrier of a SCNSA mutation that leads to a "loss of function" of the channel. The decreased sodium current measured with mutated Nay 1.5 channels, at physiological temperature, was a one of the factors that could explain the observed Brugada syndrome. The last project aimed at identifying a new potential protein interacting with the cardiac sodium channel. We found that the protein SAP97 binds the three last amino-acids of the C-terminus of Na,, 1.5. Our results also indicated that silencing the expression of SAP97 in HEK293 cells decreased the sodium current. Sodium channels lacking their three last residues also produced a reduced INa. These preliminary results suggest that SAP97 is implicated in the regulation of sodium channel. Whether this effect is direct or imply the action of an adaptor protein remains to be investigated. Moreover, our group has previously shown that Nav1.5 channels are localized to lateral membranes of cardiomyocytes by the dystrophin multiprotein complex (DMC). This suggests that sodium channels are distributed in, at least, two different pools: one targeted at lateral membranes by DMC and the other at intercalated discs by another protein such as SAP97.These studies reveal that cardiac and muscle diseases may result from ion channel mutations but also from regulatory proteins affecting their regulation.Résumé :La contraction des muscles et du coeur est principalement due à la propagation, à travers les cellules excitables, d'un stimulus électrique appelé potentiel d'action (PA). C'est l'ouverture séquentielle de plusieurs canaux ioniques transmembranaires, permettant l'entrée ou la sortie d'ions dans la cellule, qui est à l'origine de ce PA. Parmi tous les canaux ioniques impliqués dans ce processus, les canaux sodiques dépendant du voltage sont responsables de la première phase du potentiel d'action. Les différentes isoformes de ces canaux (de Nav1.1 à Nav1.9 et NavX) sont codées par dix gènes distincts. Nav1.4 et Nav1.5 sont les principaux variants exprimés respectivement dans le muscle et le coeur. Plusieurs mutations ont été décrites dans les gènes qui codent pour ces deux canaux: SCN4A (pour Nav1.4) et SCNSA (pour Nav1.5). Elles sont impliquées dans des pathologies neuromusculaires telles que des paralysies ou myotonies (SCN4A) ou des arythmies cardiaques pouvant conduire à la mort subite cardiaque (SCNSA).Mon travail de thèse a consisté à étudier les maladies liées aux dysfonctionnements de ces canaux, aussi appelées canalopathies. J'ai ainsi analysé la fonction et la régulation des canaux sodiques dépendant du voltage dans le muscle squelettique et le coeur. A travers les deux premières études, j'ai ainsi pu examiner les conséquences de deux mutations affectant respectivement les canaux Nav1.4 et Nav1.5. Les canaux sauvages ou mutants ont été exprimés dans des cellules HEK293 afin de caractériser leurs propriétés biophysiques par la technique du patch clamp en configuration cellule entière. Nous avons pu déterminer que la mutation trouvée dans le gène SCN4A engendrait des modifications importantes de la fonction du canal musculaire. Ces altérations fournissent des indications nous permettant d'expliquer certains aspects de la myotonie observée chez les membres de la famille étudiée. Le patient présenté dans la deuxième étude était hétérozygote pour la mutation identifiée dans le gène SCNSA. La perte de fonction des canaux Nav1.5 ainsi engendrée, a été observée lors d'analyses à températures physiologiques. Elle représente l'un des éléments pouvant potentiellement expliquer le syndrome de Brugada du patient. La dernière étude a consisté à identifier une nouvelle protéine impliquée dans la régulation du canal sodique cardiaque. Nos expériences ont démontré que les trois derniers acides aminés de la partie C-terminale de Nav1.5 pouvaient interagir avec la protéine SAP97. Lorsque que l'expression de la SAP97 est réduite dans les cellules HEK293, cela induit une baisse importante du courant sodique. De même, les canaux tronqués de leurs trois derniers acides aminés génèrent un flux ionique réduit. Ces résultats préliminaires suggèrent que SAP97 est peut-être impliquée dans la régulation du canal Na,,1.5. Des expériences complémentaires permettront de déterminer si ces deux protéines interagissent directement ou si une protéine adaptatrice est nécessaire. De plus, nous avons préalablement montré que les canaux Nav1.5 étaient localisés au niveau de la membrane latérale des cardiomyocytes par le complexe multiprotéique de la dystrophine (DMC). Ceci suggère que les canaux sodiques peuvent être distribués dans un minimum de deux pools, l'un ciblé aux membranes latérales pax le DMC et l'autre dirigé vers les disques intercalaires par des protéines telles que SAP97.L'ensemble de ces études met en évidence que certaines maladies musculaires et cardiaques peuvent être la conséquence directe de mutations de canaux ioniques, mais que l'action de protéines auxiliaires peut aussi affecter leur fonction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20, 40, and 60% of maximal voluntary contraction (MVC). Eleven volunteers completed 2 min of intermittent isometric contractions (12/min) at an elbow angle of 90° interspersed with 3 min rest between intensities in systematic order. Surface electromyography (EMG) was recorded from the right biceps brachii and near infrared spectroscopy (NIRS) was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2), deoxyhemoglobin (HHb), and total hemoglobin (Hbtot). Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20 to 60% MVC (P < 0.05). Cerebral HbO2 and Hbtot increased while HHb decreased during contractions with differences observed between 60% vs. 40% and 20% MVC (P < 0.05). Muscle HbO2 decreased while HHb increased during contractions with differences being observed among intensities (P < 0.05). Muscle Hbtot increased from rest at 20% MVC (P < 0.05), while no further change was observed at 40 and 60% MVC (P > 0.05). MCAv increased from rest to exercise but was not different among intensities (P > 0.05). Force output correlated with the root mean square EMG and changes in muscle HbO2 (P < 0.05), but not changes in cerebral HbO2 (P > 0.05) at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a leveling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central neuronal activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The landscape of HCV treatments is changing dramatically. At the beginning of this new era, we highlight the challenges for HCV therapy by assessing the long-term epidemiological trends in treatment uptake, efficacy and mortality among HIV/HCV-coinfected people since the availability of HCV therapy. METHODS: We included all SHCS participants with detectable HCV RNA between 2001 and 2013. To identify predictors for treatment uptake uni- and multivariable Poisson regression models were applied. We further used survival analyses with Kaplan-Meier curves and Cox regression with drop-out as competing risk. RESULTS: Of 12,401 participants 2107 (17%) were HCV RNA positive. Of those, 636 (30%) started treatment with an incidence of 5.8/100 person years (PY) (95% CI 5.3-6.2). Sustained virological response (SVR) with pegylated interferon/ribavirin was achieved in 50% of treated patients, representing 15% of all participants with replicating HCV-infection. 344 of 2107 (16%) HCV RNA positive persons died, 59% from extrahepatic causes. Mortality/100 PY was 2.9 (95% CI 2.6-3.2) in untreated patients, 1.3 (1.0-1.8) in those treated with failure, and 0.6 (0.4-1.0) in patients with SVR. In 2013, 869/2107 (41%) participants remained HCV RNA positive. CONCLUSIONS: Over the last 13years HCV treatment uptake was low and by the end of 2013, a large number of persons remain to be treated. Mortality was high, particularly in untreated patients, and mainly due to non-liver-related causes. Accordingly, in HIV/HCV-coinfected patients, integrative care including the diagnosis and therapy of somatic and psychiatric disorders is important to achieve mortality rates similar to HIV-monoinfected patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to verify in man the relationships of muscle glycogen synthase and phosphorylase activities with glycogen concentration that were reported in animal studies. The upper level of glycogen concentration in muscle is known to be tightly controlled, and glycogen concentration was reported to have an inhibitory effect on synthase activity and a stimulatory effect on phosphorylase activity. Glycogen synthase and phosphorylase activity and glycogen concentration were measured in muscle biopsies in a group of nine normal subjects after stimulating an increase of their muscle glycogen concentration through either an intravenous glucose-insulin infusion to stimulate glycogen synthesis, or an Intralipid (Vitrum, Stockholm, Sweden) infusion in the basal state to inhibit glycogen mobilization by favoring lipid oxidation at the expense of glucose oxidation. Phosphorylase activity increased from 71.3 +/- 21.0 to 152.8 +/- 20.0 nmol/min/mg protein (P < .005) after the glucose-insulin infusion. Phosphorylase activity was positively correlated with glycogen concentration (P = .005 and P = .0001) after the glucose-insulin and Intralipid infusions, respectively. Insulin-stimulated glycogen synthase activity was significantly negatively correlated with glycogen concentration at the end of the Intralipid infusion (P < .005). In conclusion, by demonstrating a negative correlation of glycogen concentration with glycogen synthase and a positive correlation with phosphorylase, this study might confirm in man the double-feedback mechanism by which changes in glycogen concentration regulate glycogen synthase and phosphorylase activities. It suggests that this mechanism might play an important role in the regulation of glucose storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training. METHODS: Thirteen OA (64.8 ± 4.9 yr) exercising 5 times per week or more were compared with 14 YA (27.8 ± 4.9 yr) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase, and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. RESULTS: V˙O2peak was lower in OA than YA. The OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, whereas type II fibers were smaller in OA compared with YA. Both groups had similar succinate dehydrogenase content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, carbohydrate-ox was lower in OA but with similar Fat-ox. CONCLUSIONS: Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older with younger athletes matched by exercise mode and frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel monoclonal antibody, M7, is described, that reacts on Western blots with the large subunit of the neurofilament triplet proteins (NF-H) and with striated muscle myosin of Xenopus laevis. Enzymatically digested neurofilament and myosin proteins revealed different immunoreactive peptide fragments on Western blots. Therefore, the antibody must react with immunologically related epitopes common to both proteins. Immunohistochemistry showed staining of large and small axons in CNS and PNS, and nerves could be followed into endplate regions of skeletal muscles. These muscles were characterized by a striated immunostaining of the M-lines. Despite the crossreactivity of M7 with NF-H and muscle myosin, this antibody may be a tool to study innervation of muscle fibers, and to define changes in the neuromuscular organization during early development and metamorphosis of tadpoles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 48%, which is consistent with an increase in the maximal glucose transport rate, Tmax, by 58% compared with the sham-treated animals. The localized 13C NMR measurements of brain glucose were directly validated by comparison with biochemically determined brain glucose content after rapid focused microwave fixation (1.4 s at 4 kW). Both in vivo MRS and biochemical measurements implied that brain glycogen content was not affected by chronic hypoglycaemia, consistent with brain glucose being a major factor controlling brain glycogen content. We conclude that the increased glucose transporter expression in chronic hypoglycaemia leads to increased brain glucose content at a given level of glycaemia. Such increased brain glucose concentrations can result in a lowered glycaemic threshold of counter-regulation observed in chronic hypoglycaemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While virtually absent in our diet a few hundred years ago, fructose has now become a major constituent of our modern diet. Our main sources of fructose are sucrose from beet or cane, high fructose corn syrup, fruits, and honey. Fructose has the same chemical formula as glucose (C(6)H(12)O(6)), but its metabolism differs markedly from that of glucose due to its almost complete hepatic extraction and rapid hepatic conversion into glucose, glycogen, lactate, and fat. Fructose was initially thought to be advisable for patients with diabetes due to its low glycemic index. However, chronically high consumption of fructose in rodents leads to hepatic and extrahepatic insulin resistance, obesity, type 2 diabetes mellitus, and high blood pressure. The evidence is less compelling in humans, but high fructose intake has indeed been shown to cause dyslipidemia and to impair hepatic insulin sensitivity. Hepatic de novo lipogenesis and lipotoxicity, oxidative stress, and hyperuricemia have all been proposed as mechanisms responsible for these adverse metabolic effects of fructose. Although there is compelling evidence that very high fructose intake can have deleterious metabolic effects in humans as in rodents, the role of fructose in the development of the current epidemic of metabolic disorders remains controversial. Epidemiological studies show growing evidence that consumption of sweetened beverages (containing either sucrose or a mixture of glucose and fructose) is associated with a high energy intake, increased body weight, and the occurrence of metabolic and cardiovascular disorders. There is, however, no unequivocal evidence that fructose intake at moderate doses is directly related with adverse metabolic effects. There has also been much concern that consumption of free fructose, as provided in high fructose corn syrup, may cause more adverse effects than consumption of fructose consumed with sucrose. There is, however, no direct evidence for more serious metabolic consequences of high fructose corn syrup versus sucrose consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-fructose diet stimulates hepatic de novo lipogenesis (DNL) and causes hypertriglyceridemia and insulin resistance in rodents. Fructose-induced insulin resistance may be secondary to alterations of lipid metabolism. In contrast, fish oil supplementation decreases triglycerides and may improve insulin resistance. Therefore, we studied the effect of high-fructose diet and fish oil on DNL and VLDL triglycerides and their impact on insulin resistance. Seven normal men were studied on four occasions: after fish oil (7.2 g/day) for 28 days; a 6-day high-fructose diet (corresponding to an extra 25% of total calories); fish oil plus high-fructose diet; and control conditions. Following each condition, fasting fractional DNL and endogenous glucose production (EGP) were evaluated using [1-13C]sodium acetate and 6,6-2H2 glucose and a two-step hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity. High-fructose diet significantly increased fasting glycemia (7 +/- 2%), triglycerides (79 +/- 22%), fractional DNL (sixfold), and EGP (14 +/- 3%, all P < 0.05). It also impaired insulin-induced suppression of adipose tissue lipolysis and EGP (P < 0.05) but had no effect on whole- body insulin-mediated glucose disposal. Fish oil significantly decreased triglycerides (37%, P < 0.05) after high-fructose diet compared with high-fructose diet without fish oil and tended to reduce DNL but had no other significant effect. In conclusion, high-fructose diet induced dyslipidemia and hepatic and adipose tissue insulin resistance. Fish oil reversed dyslipidemia but not insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Functional muscle recovery after peripheral nerve injury is far from optimal, partly due to atrophy of the muscle arising from prolonged denervation. We hypothesized that injecting regenerative cells into denervated muscle would reduce this atrophy. METHODS: A rat sciatic nerve lesion was performed, and Schwann cells or adipose-derived stem cells, untreated or induced to a "Schwann-cell-like" phenotype (dASC), were injected into the gastrocnemius muscle. Nerves were either repaired immediately or capped to prevent muscle reinnervation. One month later, functionality was measured using a walking track test, and muscle atrophy was assessed by examining muscle weight and histology. RESULTS: Schwann cells and dASC groups showed significantly better scores on functional tests when compared with injections of growth medium alone. Muscle weight and histology were also significantly improved in these groups. CONCLUSION: Cell injections may reduce muscle atrophy and could benefit nerve injury patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatic and extrahepatic insulin sensitivity was assessed in six healthy humans from the insulin infusion required to maintain an 8 mmol/l glucose concentration during hyperglycemic pancreatic clamp with or without infusion of 16.7 micromol. kg(-1). min(-1) fructose. Glucose rate of disappearance (GR(d)), net endogenous glucose production (NEGP), total glucose output (TGO), and glucose cycling (GC) were measured with [6,6-(2)H(2)]- and [2-(2)H(1)]glucose. Hepatic glycogen synthesis was estimated from uridine diphosphoglucose (UDPG) kinetics as assessed with [1-(13)C]galactose and acetaminophen. Fructose infusion increased insulin requirements 2.3-fold to maintain blood glucose. Fructose infusion doubled UDPG turnover, but there was no effect on TGO, GC, NEGP, or GR(d) under hyperglycemic pancreatic clamp protocol conditions. When insulin concentrations were matched during a second hyperglycemic pancreatic clamp protocol, fructose administration was associated with an 11.1 micromol. kg(-1). min(-1) increase in TGO, a 7.8 micromol. kg(-1). min(-1) increase in NEGP, a 2.2 micromol. kg(-1). min(-1) increase in GC, and a 7.2 micromol. kg(-1). min(-1) decrease in GR(d) (P < 0. 05). These results indicate that fructose infusion induces hepatic and extrahepatic insulin resistance in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Deep hypothermia has been associated with an increased incidence of postoperative neurologic dysfunction after cardiac surgery in children. Recent studies suggest an excitotoxic mechanism involving overstimulation of glutamate receptors. Extracellular glutamate uptake occurs primarily by astrocytes. Astrocytes also store glycogen, which may be used to sustain the energy-consuming glutamate uptake. Extracellular glutamate and glycogen content were studied during temperature changes mimicking cardiopulmonary bypass in vivo. METHODS: Primary cultures of cerebral cortical astrocytes were used in a specially designed incubator allowing continuous changes of temperature and ambient gas concentrations. The sequence of events was as follows: normothermia, rapid cooling (2.8 degrees C/min) followed by 60 min of deep hypothermia (15 degrees C), followed by rewarming (3.0 degrees C/min) and subsequent 5 h of mild hyperthermia (38.5 degrees C). Two different conditions of oxygenation were studied: (1) normoxia (25% O2, 70% N2, 5% CO2); or (2) hyperoxia (95% O2, 5% CO2). The extracellular glutamate concentrations and intracellular glycogen levels were measured at nine time points. RESULTS: One hundred sixty-two cultures were studied in four independent experiments. The extracellular concentration of glutamate in the normoxic group increased significantly from 35+/-10 nM/mg protein at baseline up to 100+/-15 nM/mg protein at the end of 5 h of mild hyperthermia (P < 0.05). In contrast, extracellular glutamate levels did not vary from control in the hyperoxic group. Glycogen levels decreased significantly from 260+/-85 nM/mg protein at baseline to < 25+/-5 nM/mg protein at the end of 5 h in the normoxic group (P < 0.05) but returned to control levels after rewarming in the hyperoxic group. No morphologic changes were observed in either group. CONCLUSION: The extracellular concentration of glutamate increases, whereas the intracellular glycogen content decreases when astrocytes are exposed to a sequence of deep hypothermia and rewarming. This effect of hypothermia is prevented when astrocytes are exposed to hyperoxic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Intramyocellular lipids, including diacylglycerol (DAG) and ceramides, have been linked to insulin resistance. This randomised repeated-measures study examined the effects of diet-induced weight loss (DIWL) and aerobic exercise (EX) on insulin sensitivity and intramyocellular triacylglycerol (IMTG), DAG and ceramide. METHODS: Sixteen overweight to obese adults (BMI 30.6 ± 0.8; 67.2 ± 4.0 years of age) with either impaired fasting glucose, or impaired glucose tolerance completed one of two lifestyle interventions: DIWL (n = 8) or EX (n = 8). Insulin sensitivity was determined using hyperinsulinaemic-euglycaemic clamps. Intramyocellular lipids were measured in muscle biopsies using histochemistry and tandem mass spectrometry. RESULTS: Insulin sensitivity was improved with DIWL (20.6 ± 4.7%) and EX (19.2 ± 12.9%). Body weight and body fat were decreased by both interventions, with greater decreases in DIWL compared with EX. Muscle glycogen, IMTG content and oxidative capacity were all significantly (p < 0.05) decreased with DIWL and increased with EX. There were decreases in DAG with DIWL (-12.4 ± 14.6%) and EX (-40.9 ± 12.0%). Ceramide decreased with EX (-33.7 ± 11.2%), but not with DIWL. Dihydroceramide was decreased with both interventions. Sphingosine was decreased only with EX. Changes in total DAG, total ceramides and other sphingolipids did not correlate with changes in glucose disposal. Stearoyl-coenzyme A desaturase 1 (SCD1) content was decreased with DIWL (-19.5 ± 8.5%, p < 0.05), but increased with EX (19.6 ± 7.4%, p < 0.05). Diacylglycerol acyltransferase 1 (DGAT1) was unchanged with the interventions. CONCLUSIONS/INTERPRETATION: Diet-induced weight loss and exercise training both improved insulin resistance and decreased DAG, while only exercise decreased ceramides, despite the interventions having different effects on IMTG. These alterations may be mediated through differential changes in skeletal muscle capacity for oxidation and triacylglycerol synthesis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00766298.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Both nutritional and genetic factors are involved in the pathogenesis of nonalcoholic fatty liver disease and insulin resistance. OBJECTIVE: The aim was to assess the effects of fructose, a potent stimulator of hepatic de novo lipogenesis, on intrahepatocellular lipids (IHCLs) and insulin sensitivity in healthy offspring of patients with type 2 diabetes (OffT2D)--a subgroup of individuals prone to metabolic disorders. DESIGN: Sixteen male OffT2D and 8 control subjects were studied in a crossover design after either a 7-d isocaloric diet or a hypercaloric high-fructose diet (3.5 g x kg FFM(-1) x d(-1), +35% energy intake). Hepatic and whole-body insulin sensitivity were assessed with a 2-step hyperinsulinemic euglycemic clamp (0.3 and 1.0 mU x kg(-1) x min(-1)), together with 6,6-[2H2]glucose. IHCLs and intramyocellular lipids (IMCLs) were measured by 1H-magnetic resonance spectroscopy. RESULTS: The OffT2D group had significantly (P < 0.05) higher IHCLs (+94%), total triacylglycerols (+35%), and lower whole-body insulin sensitivity (-27%) than did the control group. The high-fructose diet significantly increased IHCLs (control: +76%; OffT2D: +79%), IMCLs (control: +47%; OffT2D: +24%), VLDL-triacylglycerols (control: +51%; OffT2D: +110%), and fasting hepatic glucose output (control: +4%; OffT2D: +5%). Furthermore, the effects of fructose on VLDL-triacylglycerols were higher in the OffT2D group (group x diet interaction: P < 0.05). CONCLUSIONS: A 7-d high-fructose diet increased ectopic lipid deposition in liver and muscle and fasting VLDL-triacylglycerols and decreased hepatic insulin sensitivity. Fructose-induced alterations in VLDL-triacylglycerols appeared to be of greater magnitude in the OffT2D group, which suggests that these individuals may be more prone to developing dyslipidemia when challenged by high fructose intakes. This trial was registered at clinicaltrials.gov as NCT00523562.