114 resultados para cyclotron resonance spectroscopy
Resumo:
Recently, the spin-echo full-intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High-quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 +/- 0.6 Hz at 3T and 12.1 +/- 1.0 Hz at 7T for water) and the high signal-to-noise ratio (SNR) of the artifact-free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér-Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two-fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7-fold increase in average SNR (= peak height/root mean square [RMS]-of-noise) per unit-time.
Resumo:
Studies in adults have shown that late gadolinium enhanced cardiac magnetic resonance is a safe and noninvasive diagnostic tool which allows one to differentiate myocardial infarction from myocarditis. We believe that it may also be highly useful in the paediatric population for the same purpose.
Resumo:
Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neurochemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T(1). To minimize effects of heterogeneities in metabolites T(1), the aim of the study was to assess MM signal contributions by combining inversion recovery (IR) and diffusion-weighted proton spectroscopy at high-magnetic field (14.1 T) and short echo time (= 8 msec) in the rat brain. IR combined with diffusion weighting experiments (with δ/Δ = 1.5/200 msec and b-value = 11.8 msec/μm(2)) showed that the metabolite nulled spectrum (inversion time = 740 msec) was affected by residuals attributed to creatine, inositol, taurine, choline, N-acetylaspartate as well as glutamine and glutamate. While the metabolite residuals were significantly attenuated by 50%, the MM signals were almost not affected (< 8%). The combination of metabolite-nulled IR spectra with diffusion weighting allows a specific characterization of MM resonances with minimal metabolite signal contributions and is expected to lead to a more precise quantification of the neurochemical profile.
Resumo:
Full signal intensity (1)H-[(13)C] NMR spectroscopy, combining a preceding (13)C-editing block based on an inversion BISEP (B(1)-insensitive spectral editing pulse) with a spin-echo coherence-based localization, was developed and implemented at 14.1 T. (13)C editing of the proposed scheme was achieved by turning on and off the (13)C adiabatic full passage in the (13)C-editing block to prepare inverted and noninverted (13)C-coupled (1)H coherences along the longitudinal axis prior to localization. The novel (1)H-[(13)C] NMR approach was applied in vivo under infusion of the glia-specific substrate [2-(13)C] acetate. Besides a approximately 50% improvement in sensitivity, spectral dispersion was enhanced at 14.1 T, especially for J-coupled metabolites such as glutamate and glutamine. A more distinct spectral structure at 1.9-2.2 ppm(parts per million) was observed, e.g., glutamate C3 showed a doublet pattern in both simulated (1)H spectrum and in vivo (13)C-edited (1)H NMR spectra. Besides (13)C time courses of glutamate C4 and glutamine C4, the time courses of glutamate C3 and glutamine C3 obtained by (1)H-[(13)C] NMR spectroscopy were reported for the first time. Such capability should greatly improve the ability to study neuron-glial metabolism using (1)H-observed (13)C-edited NMR spectroscopy.
Resumo:
Energy metabolism supports both inhibitory and excitatory neurotransmission processes. This study investigated the specific contribution of astrocytic metabolism to γ-aminobutyric acid (GABA) synthesis and inhibitory GABAergic neurotransmission that remained to be ilucidated in vivo. Therefore, we measured (13) C incorporation into brain metabolites by dynamic (13) C nuclear magnetic resonance spectroscopy at 14.1 T in rats under α-chloralose anaesthesia during infusion of [1,6-(13) C]glucose. The enhanced sensitivity at 14.1 T allowed to quantify incorporation of (13) C into the three aliphatic carbons of GABA non-invasively. Metabolic fluxes were determined with a mathematical model of brain metabolism comprising glial, glutamatergic and GABAergic compartments. GABA synthesis rate was 0.11 ± 0.01 μmol/g/min. GABA-glutamine cycle was 0.053 ± 0.003 μmol/g/min and accounted for 22 ± 1% of total neurotransmitter cycling between neurons and glia. Cerebral glucose oxidation was 0.47 ± 0.02 μmol/g/min, of which 35 ± 1% and 7 ± 1% was diverted to the glutamatergic and GABAergic tricarboxylic acid cycles, respectively. The remaining fraction of glucose oxidation was in glia, where 12 ± 1% of the TCA cycle flux was dedicated to oxidation of GABA. 16 ± 2% of glutamine synthesis was provided to GABAergic neurons. We conclude that substantial metabolic activity occurs in GABAergic neurons and that glial metabolism supports both glutamatergic and GABAergic neurons in the living rat brain. We performed (13) C NMR spectroscopy in vivo at high magnetic field (14.1 T) upon administration of [1,6-(13) C]glucose. This allowed to measure (13) C incorporation into the three aliphatic carbons of GABA in the rat brain, in addition to those of glutamate, glutamine and aspartate. These data were then modelled to determine fluxes of energy metabolism in GABAergic and glutamatergic neurons and glial cells.
Resumo:
Proton NMR spectroscopy is emerging from translational and preclinical neuroscience research as an important tool for evidence based diagnosis and therapy monitoring. It provides biomarkers that offer fingerprints of neurological disorders even in cases where a lesion is not yet observed in MR images. The collection of molecules used as cerebral biomarkers that are detectable by (1)H NMR spectroscopy define the so-called "neurochemical profile". The non-invasive quality of this technique makes it suitable not only for diagnostic purposes but also for therapy monitoring paralleling an eventual neuroprotection. The application of (1)H NMR spectroscopy in basic and translational neuroscience research is discussed here.
Resumo:
In vivo 13C NMR spectroscopy has the unique capability to measure metabolic fluxes noninvasively in the brain. Quantitative measurements of metabolic fluxes require analysis of the 13C labeling time courses obtained experimentally with a metabolic model. The present work reviews the ingredients necessary for a dynamic metabolic modeling study, with particular emphasis on practical issues.
Resumo:
(13)C magnetic resonance spectroscopy (MRS) combined with the administration of (13)C labeled substrates uniquely allows to measure metabolic fluxes in vivo in the brain of humans and rats. The extension to mouse models may provide exclusive prospect for the investigation of models of human diseases. In the present study, the short-echo-time (TE) full-sensitivity (1)H-[(13)C] MRS sequence combined with high magnetic field (14.1 T) and infusion of [U-(13)C6] glucose was used to enhance the experimental sensitivity in vivo in the mouse brain and the (13)C turnover curves of glutamate C4, glutamine C4, glutamate+glutamine C3, aspartate C2, lactate C3, alanine C3, γ-aminobutyric acid C2, C3 and C4 were obtained. A one-compartment model was used to fit (13)C turnover curves and resulted in values of metabolic fluxes including the tricarboxylic acid (TCA) cycle flux VTCA (1.05 ± 0.04 μmol/g per minute), the exchange flux between 2-oxoglutarate and glutamate Vx (0.48 ± 0.02 μmol/g per minute), the glutamate-glutamine exchange rate V(gln) (0.20 ± 0.02 μmol/g per minute), the pyruvate dilution factor K(dil) (0.82 ± 0.01), and the ratio for the lactate conversion rate and the alanine conversion rate V(Lac)/V(Ala) (10 ± 2). This study opens the prospect of studying transgenic mouse models of brain pathologies.
Resumo:
BACKGROUND: The heart relies on continuous energy production and imbalances herein impair cardiac function directly. The tricarboxylic acid (TCA) cycle is the primary means of energy generation in the healthy myocardium, but direct noninvasive quantification of metabolic fluxes is challenging due to the low concentration of most metabolites. Hyperpolarized (13)C magnetic resonance spectroscopy (MRS) provides the opportunity to measure cellular metabolism in real time in vivo. The aim of this work was to noninvasively measure myocardial TCA cycle flux (VTCA) in vivo within a single minute. METHODS AND RESULTS: Hyperpolarized [1-(13)C]acetate was administered at different concentrations in healthy rats. (13)C incorporation into [1-(13)C]acetylcarnitine and the TCA cycle intermediate [5-(13)C]citrate was dynamically detected in vivo with a time resolution of 3s. Different kinetic models were established and evaluated to determine the metabolic fluxes by simultaneously fitting the evolution of the (13)C labeling in acetate, acetylcarnitine, and citrate. VTCA was estimated to be 6.7±1.7μmol·g(-1)·min(-1) (dry weight), and was best estimated with a model using only the labeling in citrate and acetylcarnitine, independent of the precursor. The TCA cycle rate was not linear with the citrate-to-acetate metabolite ratio, and could thus not be quantified using a ratiometric approach. The (13)C signal evolution of citrate, i.e. citrate formation was independent of the amount of injected acetate, while the (13)C signal evolution of acetylcarnitine revealed a dose dependency with the injected acetate. The (13)C labeling of citrate did not correlate to that of acetylcarnitine, leading to the hypothesis that acetylcarnitine formation is not an indication of mitochondrial TCA cycle activity in the heart. CONCLUSIONS: Hyperpolarized [1-(13)C]acetate is a metabolic probe independent of pyruvate dehydrogenase (PDH) activity. It allows the direct estimation of VTCA in vivo, which was shown to be neither dependent on the administered acetate dose nor on the (13)C labeling of acetylcarnitine. Dynamic (13)C MRS coupled to the injection of hyperpolarized [1-(13)C]acetate can enable the measurement of metabolic changes during impaired heart function.
Resumo:
The interplay of amyloid and mitochondrial function is considered crucial in the pathophysiology of Alzheimer's disease (AD). We tested the association of the putative marker of mitochondrial function N-acetylaspartate (NAA) as measured by proton magnetic resonance spectroscopy within the medial temporal lobe and cerebrospinal fluid amyoid-β42 (Aβ42), total Tau and pTau181. 109 patients were recruited in a multicenter study (40 mild AD patients, 14 non-AD dementia patients, 29 mild cognitive impairment (MCI) AD-type patients, 26 MCI of non-AD type patients). NAA correlated with Aβ42 within the AD group. Since the NAA concentration is coupled to neuronal mitochondrial function, the correlation between NAA and Aβ42 may reflect the interaction between disrupted mitochondrial pathways and amyloid production.
Resumo:
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.
Resumo:
The recent developments in high magnetic field 13C magnetic resonance spectroscopy with improved localization and shimming techniques have led to important gains in sensitivity and spectral resolution of 13C in vivo spectra in the rodent brain, enabling the separation of several 13C isotopomers of glutamate and glutamine. In this context, the assumptions used in spectral quantification might have a significant impact on the determination of the 13C concentrations and the related metabolic fluxes. In this study, the time domain spectral quantification algorithm AMARES (advanced method for accurate, robust and efficient spectral fitting) was applied to 13 C magnetic resonance spectroscopy spectra acquired in the rat brain at 9.4 T, following infusion of [1,6-(13)C2 ] glucose. Using both Monte Carlo simulations and in vivo data, the goal of this work was: (1) to validate the quantification of in vivo 13C isotopomers using AMARES; (2) to assess the impact of the prior knowledge on the quantification of in vivo 13C isotopomers using AMARES; (3) to compare AMARES and LCModel (linear combination of model spectra) for the quantification of in vivo 13C spectra. AMARES led to accurate and reliable 13C spectral quantification similar to those obtained using LCModel, when the frequency shifts, J-coupling constants and phase patterns of the different 13C isotopomers were included as prior knowledge in the analysis.
Resumo:
Currently, the most widely used criteria for assessing response to therapy in high-grade gliomas are based on two-dimensional tumor measurements on computed tomography (CT) or magnetic resonance imaging (MRI), in conjunction with clinical assessment and corticosteroid dose (the Macdonald Criteria). It is increasingly apparent that there are significant limitations to these criteria, which only address the contrast-enhancing component of the tumor. For example, chemoradiotherapy for newly diagnosed glioblastomas results in transient increase in tumor enhancement (pseudoprogression) in 20% to 30% of patients, which is difficult to differentiate from true tumor progression. Antiangiogenic agents produce high radiographic response rates, as defined by a rapid decrease in contrast enhancement on CT/MRI that occurs within days of initiation of treatment and that is partly a result of reduced vascular permeability to contrast agents rather than a true antitumor effect. In addition, a subset of patients treated with antiangiogenic agents develop tumor recurrence characterized by an increase in the nonenhancing component depicted on T2-weighted/fluid-attenuated inversion recovery sequences. The recognition that contrast enhancement is nonspecific and may not always be a true surrogate of tumor response and the need to account for the nonenhancing component of the tumor mandate that new criteria be developed and validated to permit accurate assessment of the efficacy of novel therapies. The Response Assessment in Neuro-Oncology Working Group is an international effort to develop new standardized response criteria for clinical trials in brain tumors. In this proposal, we present the recommendations for updated response criteria for high-grade gliomas.
Resumo:
Type 1 diabetes can affect hippocampal function triggering cognitive impairment through unknown mechanisms. Caffeine consumption prevents hippocampal degeneration and memory dysfunction upon different insults and is also known to affect peripheral glucose metabolism. Thus we now characterized glucose transport and the neurochemical profile in the hippocampus of streptozotocin-induced diabetic rats using in vivo(1)H NMR spectroscopy and tested the effect of caffeine consumption thereupon. We found that hippocampal glucose content and transport were unaltered in diabetic rats, irrespective of caffeine consumption. However diabetic rats displayed alterations in their hippocampal neurochemical profile, which were normalized upon restoration of normoglycaemia, with the exception of myo-inositol that remained increased (36 +/- 5%, p < 0.01 compared to controls) likely reflecting osmolarity deregulation. Compared to controls, caffeine-consuming diabetic rats displayed increased hippocampal levels of myo-inositol (15 +/- 5%, p < 0.05) and taurine (23 +/- 4%, p < 0.01), supporting the ability of caffeine to control osmoregulation. Compared to controls, the hippocampus of diabetic rats displayed a reduced density of synaptic proteins syntaxin, synaptophysin and synaptosome-associated protein of 25 kDa (in average 18 +/- 1%, p < 0.05) as well increased glial fibrillary acidic protein (20 +/- 5%, p < 0.05), suggesting synaptic degeneration and astrogliosis, which were prevented by caffeine consumption. In conclusion, neurochemical alterations in the hippocampus of diabetic rats are not related to defects of glucose transport but likely reflect osmoregulatory adaptations caused by hyperglycemia. Furthermore, caffeine consumption affected this neurochemical adaptation to high glucose levels, which may contribute to its potential neuroprotective effects, namely preventing synaptic degeneration and astrogliosis.
Resumo:
Although glycogen (Glyc) is the main carbohydrate storage component, the role of Glyc in the brain during prolonged wakefulness is not clear. The aim of this study was to determine brain Glyc concentration ([]) and turnover time (tau) in euglycemic conscious and undisturbed rats, compared to rats maintained awake for 5h. To measure the metabolism of [1-(13)C]-labeled Glc into Glyc, 23 rats received a [1-(13)C]-labeled Glc solution as drink (10% weight per volume in tap water) ad libitum as their sole source of exogenous carbon for a "labeling period" of either 5h (n=13), 24h (n=5) or 48 h (n=5). Six of the rats labeled for 5h were continuously maintained awake by acoustic, tactile and olfactory stimuli during the labeling period, which resulted in slightly elevated corticosterone levels. Brain [Glyc] measured biochemically after focused microwave fixation in the rats maintained awake (3.9+/-0.2 micromol/g, n=6) was not significantly different from that of the control group (4.0+/-0.1 micromol/g, n=7; t-test, P>0.5). To account for potential variations in plasma Glc isotopic enrichment (IE), Glyc IE was normalized by N-acetyl-aspartate (NAA) IE. A simple mathematical model was developed to derive brain Glyc turnover time as 5.3h with a fit error of 3.2h and NAA turnover time as 15.6h with a fit error of 6.5h, in the control rats. A faster tau(Glyc) (2.9h with a fit error of 1.2h) was estimated in the rats maintained awake for 5h. In conclusion, 5h of prolonged wakefulness mainly activates glycogen metabolism, but has minimal effect on brain [Glyc].