39 resultados para aromatic 8,14
Resumo:
Over the last two decades, Atomic Force Microscopy (AFM) has emerged as the tool of choice to image living organisms in a near-physiological environment. Whereas fluorescence microscopy techniques allow labeling and tracking of components inside cells and the observation of dynamic processes, AFM is mainly a surface technique that can be operated on a wide range of substrates including biological samples. AFM enables extraction of topographical, mechanical and chemical information from these samples.
Resumo:
Aim. Several software packages (SWP) and models have been released for quantification of myocardial perfusion (MP). Although they all are validated against something, the question remains how well their values agree. The present analysis focused on cross-comparison of three SWP for MP quantification of 13N-ammonia PET studies. Materials & Methods. 48 rest and stress MP 13N-ammonia PET studies of hypertrophic cardiomyopathy (HCM) patients (Sciagrà et al., 2009) were analysed with three SW packages - Carimas, PMOD, and FlowQuant - by three observers blinded to the results of each other. All SWP implement the one-tissue-compartment model (1TCM, DeGrado et al. 1996), and first two - the two-tissue-compartment model (2TCM, Hutchins et al. 1990) as well. Linear mixed model for the repeated measures was fitted to the data. Where appropriate we used Bland-Altman plots as well. The reproducibility was assessed on global, regional and segmental levels. Intraclass correlation coefficients (ICC), differences between the SWPs and between models were obtained. ICC≥0.75 indicated excellent reproducibility, 0.4≤ICC<0.75 indicated fair to good reproducibility, ICC<0.4 - poor reproducibility (Rosner, 2010). Results. When 1TCM MP values were compared, the SW agreement on global and regional levels was excellent, except for Carimas vs. PMOD at RCA: ICC=0.715 and for PMOD vs. FlowQuant at LCX:ICC=0.745 which were good. In segmental analysis in five segments: 7,12,13, 16, and 17 the agreement between all SWP was excellent; in the remaining 12 segments the agreement varied between the compared SWP. Carimas showed excellent agreement with FlowQuant in 13 segments and good in four - 1, 5, 6, 11: 0.687≤ICCs≤0.73; Carimas had excellent agreement with PMOD in 11 segments, good in five_4, 9, 10, 14, 15: 0.682≤ICCs≤0.737, and poor in segment 3: ICC=0.341. PMOD had excellent agreement with FlowQuant in eight segments and substantial-to-good in nine_1, 2, 3, 5, 6,8-11: 0.585≤ICCs≤0.738. Agreement between Carimas and PMOD for 2TCM was good at a global level: ICC=0.745, excellent at LCX (0.780) and RCA (0.774), good at LAD (0.662); agreement was excellent for ten segments, fair-to-substantial for segments 2, 3, 8, 14, 15 (0.431≤ICCs≤0.681), poor for segments 4 (0.384) and 17 (0.278). Conclusions. The three SWP used by different operators to analyse 13N-ammonia PET MP studies provide results that agree well at a global level, regional levels, and mostly well even at a segmental level. Agreement is better for 1TCM. Poor agreement at segments 4 and 17 for 2TCM needs further clarification.
Resumo:
BACKGROUND: Hyperzincemia and hypercalprotectinemia (Hz/Hc) is a distinct autoinflammatory entity involving extremely high serum concentrations of the proinflammatory alarmin myeloid-related protein (MRP) 8/14 (S100A8/S100A9 and calprotectin). OBJECTIVE: We sought to characterize the genetic cause and clinical spectrum of Hz/Hc. METHODS: Proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) gene sequencing was performed in 14 patients with Hz/Hc, and their clinical phenotype was compared with that of 11 patients with pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. PSTPIP1-pyrin interactions were analyzed by means of immunoprecipitation and Western blotting. A structural model of the PSTPIP1 dimer was generated. Cytokine profiles were analyzed by using the multiplex immunoassay, and MRP8/14 serum concentrations were analyzed by using an ELISA. RESULTS: Thirteen patients were heterozygous for a missense mutation in the PSTPIP1 gene, resulting in a p.E250K mutation, and 1 carried a mutation resulting in p.E257K. Both mutations substantially alter the electrostatic potential of the PSTPIP1 dimer model in a region critical for protein-protein interaction. Patients with Hz/Hc have extremely high MRP8/14 concentrations (2045 ± 1300 μg/mL) compared with those with PAPA syndrome (116 ± 74 μg/mL) and have a distinct clinical phenotype. A specific cytokine profile is associated with Hz/Hc. Hz/Hc mutations altered protein binding of PSTPIP1, increasing interaction with pyrin through phosphorylation of PSTPIP1. CONCLUSION: Mutations resulting in charge reversal in the y-domain of PSTPIP1 (E→K) and increased interaction with pyrin cause a distinct autoinflammatory disorder defined by clinical and biochemical features not found in patients with PAPA syndrome, indicating a unique genotype-phenotype correlation for mutations in the PSTPIP1 gene. This is the first inborn autoinflammatory syndrome in which inflammation is driven by uncontrolled release of members of the alarmin family.
Resumo:
OBJECTIVE: Monosodium urate monohydrate (MSU) crystal-induced interleukin-1β (IL-1β) secretion is a critical factor in the pathogenesis of gout. However, without costimulation by a proIL-1β-inducing factor, MSU crystals alone are insufficient to induce IL-1β secretion. The responsible costimulatory factors that act as a priming endogenous signal in vivo are not yet known. We undertook this study to analyze the costimulatory properties of myeloid-related protein 8 (MRP-8) and MRP-14 (endogenous Toll-like receptor 4 [TLR-4] agonists) in MSU crystal-induced IL-1β secretion and their relevance in gout. METHODS: MRP-8/MRP-14 was measured in paired serum and synovial fluid samples by enzyme-linked immunosorbent assay (ELISA) and localized in synovial tissue from gout patients by immunohistochemistry. Serum levels were correlated with disease activity, and MSU crystal-induced release of MRPs from human phagocytes was measured. Costimulatory effects of MRP-8 and MRP-14 on MSU crystal-induced IL-1β secretion from phagocytes were analyzed in vitro by ELISA, Western blotting, and polymerase chain reaction. The impact of MRP was tested in vivo in a murine MSU crystal-induced peritonitis model. RESULTS: MRP-8/MRP-14 levels were elevated in the synovium, tophi, and serum of patients with gout and correlated with disease activity. MRP-8/MRP-14 was released by MSU crystal-activated phagocytes and increased MSU crystal-induced IL-1β secretion in a TLR-4-dependent manner. Targeted deletion of MRP-14 in mice led to a moderately reduced response of MSU crystal-induced inflammation in vivo. CONCLUSION: MRP-8 and MRP-14, which are highly expressed in gout, are enhancers of MSU crystal-induced IL-1β secretion in vitro and in vivo. These endogenous TLR-4 ligands released by activated phagocytes contribute to the maintenance of inflammation in gout.
Resumo:
Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.
Resumo:
Aggregating fetal liver cell cultures were tested for their ability to metabolize xenobiotics using ethoxycoumarin-O-deethylase (ECOD), as marker of phase I metabolism, and glutathione S-transferase (GST), as marker for phase II reactions. Significant basal activities, stable over 14 days in culture were measured for both ECOD and GST activities. The prototype cytochrome P450 inducers, 3-methylcholanthrene (3-MC) and phenobarbital (PB), increased ECOD and GST activities reaching an optimum 7 days after culturing, followed by a decline in activity. This decline was partially prevented by 1% dimethyl sulfoxide (DMSO) added chronically to the culture medium. DMSO was also found to induce ECOD activity and to a lesser extent GST activity. Furthermore, it potentiated in a dose-dependent manner the induction of ECOD by PB. The food-borne carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is metabolically transformed through a number of pathways in vivo. It was therefore used to examine the metabolic capacity in fetal and adult liver cell aggregates. Metabolism of MeIQx was mainly through N2-conjugation, resulting in formation of the N2-glucuronide and sulfamate conjugates for non-induced fetal liver cells. These metabolites were also found in large amounts in non-induced adult liver cells. Low levels of cytochrome P450-mediated ring-hydroxylated metabolites were detected in both non-induced fetal and adult liver cells. After induction with arochlor (PCB) or 3-MC, the major pathway was ring-hydroxylation (cytochrome P450 dependent), followed by conjugation to beta-glucuronic or sulfuric acid. The presence of the glucuronide conjugate of N-hydroxy-MeIQx, a mutagenic metabolite, suggested an induction of P450 CYP1A2. The metabolism of MeIQx by liver cell aggregates is very similar to that observed in vivo and suggests that aggregating liver cell cultures are a useful model for in vitro metabolic studies in toxicology.
Resumo:
Purpose of the study: Reconstruction of the anterior cruciate ligament (ACL) controls laxity but does not enable restoration of strictly normal 3D kinematics. The purpose of this study was to compare the kinematics of the pathological knee with that of the healthy knee after ACL plasty. This study applied a new ambulatory system using miniature captors. Material and method: Five patients with an isolated injury of the ACL participated in this study. The patients were assessed after injury (T1), at five months (T2), and at 14 months (T3) after surgery. The assessment included laxity (KT-1000), the IKDC score and the Lysholm score. The 3D angles of the knees were measured when walking 30 m on flat ground using a system composed of to small inertia units (3D accelerometer and 3D gyroscope) and a portable recorder. Functional settings were optimised and validating to ensure easy precise measurement of the 3D angles. Symmetry of the two knees was quantified using a symmetry index (SI) (difference in amplitude normalised in relation to mean amplitude) and the correlation coefficient CC. Results: Clinical indicators improved during the follow-up (IKDC T1: 3C, 2C; T2: 5B; T3: 2A, 3B; subjective IKD: 53-95; Lysholm 67-96). Mean laxity improved from 8.6m to 2.5 mm. The gait analysis showed increased symmetry in terms of amplitude for flexion-extension (SI: −17% at T1, −1% at T2, 1% at T3), and an increase in symmetry in terms of the rotation signature (CC: 0.16 at T1, 0.99 at T2, 0.99 at T3). There was no trend to varus-valgus. Discussion: This study demonstrates the clinical application of the new ambulatory system for measuring 3D angles of the knee joint. Joint symmetry increased after ACL plasty but still showed some perturbation at 14 months. The results observed here are in agreement with the literature. Other patients and other types of gait are being analysed. Conclusion: This portable system allows gait analysis outside the laboratory, before and after ACL injury. It is very useful for follow-up after surgery.
Resumo:
Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24-7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5-119.8 ng m(-3) during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure.
Resumo:
Missed appointments represent an important medical and economical issue. Few studies on the subject are reported in the literature, particularly regarding adolescents. Our aim was to characterize missed and cancelled appointments in a multidisciplinary outpatient clinic for adolescents, to assess the effectiveness of a policy aimed at reducing missed appointments by introducing payment for those missed appointments not cancelled in advance, and to compare the rates between staff and resident physicians. A total of 32,816 consultations (representing 35 patients aged 12-20 years, 82.4% females) between 1999 and 200 were analysed. The missed appointment rate was 11.8% whilst another 10.9% were cancellations. Females cancelled more than males (11.3% vs. 8.4%, AOR 1.31, 99% CI 1.08-1.59), but there was no difference for missed appointments (11.6% vs. 12.3%, AOR 0.88, 99% CI 0.61-1.08). April and June to October (vacation months) were associated with more missed appointments. Globally mornings had higher rates of missed appointments than afternoons (13.6% vs. 11.2%, AOR 1.25, 99% CI 1.11-1.40). There was a slight difference in missed appointment rates between staff physicians and residents (10.4%; 11.8%, AOR 1.20, 99% CI 1.08-1.33). Missed appointment rates before and after the new policy on missed appointments were similar (1999-2003: 11.9%; 2004-2006: 11.6%, AOR 0.96, 99% CI 0.83-1.10). Conversely, cancellation rates increased from 8.4% (1999-2003) to 14.5% (2004-2006) (AOR 1.83, 99% CI 1.63-2.05). Attendance rates among adolescents show variations depending on vacation and school hours. Being attentive to these factors could help prevent missed appointments. Although having to pay for missed appointments does not increase attendance, it increases cancellations with the advantage that the appointment can be rescheduled.
Resumo:
Among the PAH class of compounds, high molecular weight PAH are now considered as relevant cancer inducers, but not all of them have the same biological activity. However, their analysis is difficult, mainly due to the presence of numerous isomers and due to their low volatility. Retention indices (Ri) for 13 dibenzopyrenes and homologues were determined by high-resolution capillary gas chromatography (GC) with four different stationary phases: a 5% phenyl-substituted methylpolysiloxane column (DB-5 ms), a 35% phenyl-substituted methylpolysiloxane column (BPX-35), a 50% phenyl-substituted methylpolysiloxane column (BPX-50), and a 35% trifluoropropylmethyl polysiloxane stationary phase (Rtx-200). Correlations for retention on each phase were investigated by using 8 independent molecular descriptors. Ri has been shown to be linearly correlated to PAH volume, polarisability alpha, Hückel-pi energy on the four examined columns. Ionisation potential Ip is a fourth variable which improves the regression model for DB-5ms, BPX-35, and BPX-50 column. Correlation coefficients ranging from r2 = 0.935 to r2 = 0.952 are then observed. Application of these indices to the identification and quantification of PAH with MW 302 in certified diesel particulate matter SRM 1650a is presented and discussed. [Authors]
Resumo:
The hypothalamus plays an essential role in the central nervous system of mammals by among others regulating glucose homeostasis, food intake, temperature, and to some extent blood pressure. Assessments of hypothalamic metabolism using, e.g. (1)H MRS in mouse models can provide important insights into its function. To date, direct in vivo (1)H MRS measurements of hypothalamus have not been reported. Here, we report that in vivo single voxel measurements of mouse hypothalamus are feasible using (1)H MRS at 14.1T. Localized (1)H MR spectra from hypothalamus were obtained unilaterally (2-2.2 microL, VOI) and bilaterally (4-4.4 microL) with a quality comparable to that of hippocampus (3-3.5 microL). Using LCModel, a neurochemical profile consisting of 21 metabolites was quantified for both hypothalamus and hippocampus with most of the Cramér-Rao lower bounds within 20%. Relative to the hippocampus, the hypothalamus was characterized by high gamma-aminobutryric acid and myo-inositol, and low taurine concentrations. When studying transgenic mice with no glucose transporter isoform 8 expressed, small metabolic changes were observed, yet glucose homeostasis was well maintained. We conclude that a specific neurochemical profile of mouse hypothalamus can be measured by (1)H MRS which will allow identifying and following metabolic alterations longitudinally in the hypothalamus of genetic modified models.
Resumo:
The aim of this study was to identify genes involved in solute and matric stress mitigation in the polycyclic aromatic hydrocarbon (PAH)-degrading Novosphingobium sp. strain LH128. The genes were identified using plasposon mutagenesis and by selection of mutants that showed impaired growth in a medium containing 450 mM NaCl as a solute stress or 10% (wt/vol) polyethylene glycol (PEG) 6000 as a matric stress. Eleven and 14 mutants showed growth impairment when exposed to solute and matric stresses, respectively. The disrupted sequences were mapped on a draft genome sequence of strain LH128, and the corresponding gene functions were predicted. None of them were shared between solute and matric stress-impacted mutants. One NaCl-affected mutant (i.e., NA7E1) with a disruption in a gene encoding a putative outer membrane protein (OpsA) was susceptible to lower NaCl concentrations than the other mutants. The growth of NA7E1 was impacted by other ions and nonionic solutes and by sodium dodecyl sulfate (SDS), suggesting that opsA is involved in osmotic stress mitigation and/or outer membrane stability in strain LH128. NA7E1 was also the only mutant that showed reduced growth and less-efficient phenanthrene degradation in soil compared to the wild type. Moreover, the survival of NA7E1 in soil decreased significantly when the moisture content was decreased but was unaffected when soluble solutes from sandy soil were removed by washing. opsA appears to be important for the survival of strain LH128 in soil, especially in the case of reduced moisture content, probably by mitigating the effects of solute stress and retaining membrane stability.
Resumo:
This paper describes the development of a polyimide/SU-8 catheter-tip MEMS gauge pressure sensor. Finite element analysis was used to investigate critical parameters, impacting on the device design and sensing characteristics. The sensing element of the device was fabricated by polyimide-based micromachining on a flexible membrane, using embedded thin-film metallic wires as piezoresistive elements. A chamber containing this flexible membrane was sealed using an adapted SU-8 bonding technique. The device was evaluated experimentally and its overall performance compared with a commercial silicon-based pressure sensor. Furthermore, the device use was demonstrated by measuring blood pressure and heart rate in vivo.