56 resultados para agricultural machine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to drift apart to inherently different states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agro-ecosystems have recently experienced dramatic losses of biodiversity due to more intensive production methods. In order to increase species diversity, agri-environment schemes provide subsidies to farmers who devote a fraction of their land to ecological compensation areas (ECA). Several studies have shown that invertebrate biodiversity is actually higher in ECA than in nearby intensively cultivated farmland. It remains poorly understood, however, to what extent ECA also favour vertebrates, such as small mammals and their predators, which would contribute to restore functioning food chains within revitalized agricultural matrices. We studied small mammal populations among eight habitat types - including wildflower areas, a specific ECA in Switzerland - and habitat selection (radiotracking) by the barn owl Tyto alba, one of their principal predators. Our prediction was that habitats with higher abundances of small mammals would be more visited by foraging Barn owls during the period of chicks' provisioning. Small mammal abundance tended to be higher in wildflower areas than in any other habitat type. Barn owls, however, preferred to forage in cereal fields and grassland. They avoided all types of crops other than cereals, as well as wildflower areas, which suggests that they do not select their hunting habitat primarily with respect to prey density. Instead of prey abundance, prey accessibility may play a more crucial role: wildflower areas have a dense vegetation cover, which may impede access to prey for foraging owls. The exploitation of wildflower areas by the owls might be enhanced by creating open foraging corridors within or around wildflower areas. Wildflower areas managed in that way might contribute to restore functioning food chains within agro-ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To assess the inter/intraobserver variability of apparent diffusion coefficient (ADC) measurements in treated hepatic lesions and to compare ADC measurements in the whole lesion and in the area with the most restricted diffusion (MRDA). MATERIALS AND METHODS: Twenty-five patients with treated malignant liver lesions were examined on a 3.0T machine. After agreeing on the best ADC image, two readers independently measured the ADC values in the whole lesion and in the MRDA. These measurements were repeated 1 month later. The Bland-Altman method, Spearman correlation coefficients, and the Wilcoxon signed-rank test were used to evaluate the measurements. RESULTS: Interobserver variability for ADC measurements in the whole lesion and in the MRDA was 0.17 x 10(-3) mm(2)/s [-0.17, +0.17] and 0.43 x 10(-3) mm(2)/s [-0.45, +0.41], respectively. Intraobserver limits of agreement could be as low as [-0.10, +0.12] 10(-3) mm(2)/s and [-0.20, +0.33] 10(-3) mm(2)/s for measurements in the whole lesion and in the MRDA, respectively. CONCLUSION: A limited variability in ADC measurements does exist, and it should be considered when interpreting ADC values of hepatic malignancies. This is especially true for the measurements of the minimal ADC.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: MCI was recently subdivided into sd-aMCI, sd-fMCI, and md-aMCI. The current investigation aimed to discriminate between MCI subtypes by using DTI. MATERIALS AND METHODS: Sixty-six prospective participants were included: 18 with sd-aMCI, 13 with sd-fMCI, and 35 with md-aMCI. Statistics included group comparisons using TBSS and individual classification using SVMs. RESULTS: The group-level analysis revealed a decrease in FA in md-aMCI versus sd-aMCI in an extensive bilateral, right-dominant network, and a more pronounced reduction of FA in md-aMCI compared with sd-fMCI in right inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The comparison between sd-fMCI and sd-aMCI, as well as the analysis of the other diffusion parameters, yielded no significant group differences. The individual-level SVM analysis provided discrimination between the MCI subtypes with accuracies around 97%. The major limitation is the relatively small number of cases of MCI. CONCLUSIONS: Our data show that, at the group level, the md-aMCI subgroup has the most pronounced damage in white matter integrity. Individually, SVM analysis of white matter FA provided highly accurate classification of MCI subtypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.