39 resultados para Tractors, Metallic.
Resumo:
Objectives: We are interested in the numerical simulation of the anastomotic region comprised between outflow canula of LVAD and the aorta. Segmenta¬tion, geometry reconstruction and grid generation from patient-specific data remain an issue because of the variable quality of DICOM images, in particular CT-scan (e.g. metallic noise of the device, non-aortic contrast phase). We pro¬pose a general framework to overcome this problem and create suitable grids for numerical simulations.Methods: Preliminary treatment of images is performed by reducing the level window and enhancing the contrast of the greyscale image using contrast-limited adaptive histogram equalization. A gradient anisotropic diffusion filter is applied to reduce the noise. Then, watershed segmentation algorithms and mathematical morphology filters allow reconstructing the patient geometry. This is done using the InsightToolKit library (www.itk.org). Finally the Vascular Model¬ing ToolKit (www.vmtk.org) and gmsh (www.geuz.org/gmsh) are used to create the meshes for the fluid (blood) and structure (arterial wall, outflow canula) and to a priori identify the boundary layers. The method is tested on five different patients with left ventricular assistance and who underwent a CT-scan exam.Results: This method produced good results in four patients. The anastomosis area is recovered and the generated grids are suitable for numerical simulations. In one patient the method failed to produce a good segmentation because of the small dimension of the aortic arch with respect to the image resolution.Conclusions: The described framework allows the use of data that could not be otherwise segmented by standard automatic segmentation tools. In particular the computational grids that have been generated are suitable for simulations that take into account fluid-structure interactions. Finally the presented method features a good reproducibility and fast application.
Resumo:
The aim of this study was to compare clinical and radiological outcome of lateral condyle fracture of the elbow in children treated with bioabsorbable or metallic material. From January 2008 to December 2009, 16 children with similar fractures and ages were grouped according to the fixation material used. Children were seen at 3, 6, and 12 months and more than 4 years (mean 51.8 months) postoperatively. The clinical results were compared using the Mayo Elbow Performance Score (MEPS). Radiographic studies of the fractured and opposite elbow were assessed at last follow-up control. Twelve children had a sufficient followup and could be included in the study. Seven could be included in the traditional group and 5 in the bioabsorbable group. At 12 months, the MEPS was 100 for every child in both groups. Asymptomatic bony radiolucent visible tracks and heterotopic ossifications were noted in both groups. There were no significant differences in terms of clinical and radiological outcome between the two groups. The use of bioabsorbable pins or screws is a reasonable alternative to the traditional use of metallic materials for the treatment of lateral condyle fracture of the elbow in children.
Resumo:
The interfacial micromotion is closely associated to the long-term success of cementless hip prostheses. Various techniques have been proposed to measure them, but only a few number of points over the stem surface can be measured simultaneously. In this paper, we propose a new technique based on micro-Computer Tomography (μCT) to measure locally the relative interfacial micromotions between the metallic stem and the surrounding femoral bone. Tantalum beads were stuck at the stem surface and spread at the endosteal surface. Relative micromotions between the stem and the endosteal bone surfaces were measured at different loading amplitudes. The estimated error was 10μm and the maximal micromotion was 60μm, in the loading direction, at 1400N. This pilot study provided a local measurement of the micromotions in the 3 direction and at 8 locations on the stem surface simultaneously. This technique could be easily extended to higher loads and a much larger number of points, covering the entire stem surface and providing a quasi-continuous distribution of the 3D interfacial micromotions around the stem. The new measurement method would be very useful to compare the induced micromotions of different stem designs and to optimize the primary stability of cementless total hip arthroplasty.
Resumo:
This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods and OECD protocols. Current procedures for cleaning glassware are appropriate for most MNMs, although interference with electrodes may occur. Maintaining exposure is more difficult with MNMs compared to conventional chemicals. A metal salt control is recommended for experiments with metallic MNMs that may release free metal ions. Dispersing agents should be avoided, but if they must be used, then natural or synthetic dispersing agents are possible, and dispersion controls essential. Time constraints and technology gaps indicate that full characterisation of test media during ecotoxicity tests is currently not practical. Details of electron microscopy, dark-field microscopy, a range of spectroscopic methods (EDX, XRD, XANES, EXAFS), light scattering techniques (DLS, SLS) and chromatography are discussed. The development of user-friendly software to predict particle behaviour in test media according to DLVO theory is in progress, and simple optical methods are available to estimate the settling behaviour of suspensions during experiments. However, for soil matrices such simple approaches may not be applicable. Alternatively, a Critical Body Residue approach may be taken in which body concentrations in organisms are related to effects, and toxicity thresholds derived. For microbial assays, the cell wall is a formidable barrier to MNMs and end points that rely on the test substance penetrating the cell may be insensitive. Instead assays based on the cell envelope should be developed for MNMs. In algal growth tests, the abiotic factors that promote particle aggregation in the media (e.g. ionic strength) are also important in providing nutrients, and manipulation of the media to control the dispersion may also inhibit growth. Controls to quantify shading effects, and precise details of lighting regimes, shaking or mixing should be reported in algal tests. Photosynthesis may be more sensitive than traditional growth end points for algae and plants. Tests with invertebrates should consider non-chemical toxicity from particle adherence to the organisms. The use of semi-static exposure methods with fish can reduce the logistical issues of waste water disposal and facilitate aspects of animal husbandry relevant to MMNs. There are concerns that the existing bioaccumulation tests are conceptually flawed for MNMs and that new test(s) are required. In vitro testing strategies, as exemplified by genotoxicity assays, can be modified for MNMs, but the risk of false negatives in some assays is highlighted. In conclusion, most protocols will require some modifications and recommendations are made to aid the researcher at the bench. [Authors]
Resumo:
BACKGROUND: Closures of atrial septal defects or a patent foramen ovale (PFO) are increasingly performed percutaneously. The experience of late migration of a new bio-absorbable device is presented here, followed by conceptual discussion. METHODS: Six months post PFO closure with a BioSTAR® device a patient presented with chest pain. Echocardiography showed a hyperechogenic structure perforating the aortic wall. RESULTS: Surgical exploration showed a perforation of the ascending aorta by one metallic, non absorbable arm. This is the second case of late (>6 months) dislocation of the residual framework of the occluder. CONCLUSIONS: The overall incidence of perforation of cardiac structures due to secondary dislocation is low. However this complication exists and should kept in mind in symptomatic patients with new onset of chest pain, after percutaneous procedures. The concept of biodegradation, with residual, non absorbable metal braiding, should be reviewed, analyzing in particular long term results and incidence of secondary dislocation.
Resumo:
BACKGROUND: Vascular reconstructions are becoming challenging due to the comorbidity of the aging population and since the introduction of minimally invasive approaches. Many sutureless anastomosis devices have been designed to facilitate the cardiovascular surgeon's work and the vascular join (VJ) is one of these. We designed an animal study to assess its reliability and long-term efficacy. METHODS: VJ allows the construction of end-to-end and end-to-side anastomoses. It consists of two metallic crowns fixed to the extremity of the two conduits so that vessel edges are joined layer by layer. There is no foreign material exposed to blood. In adult sheep both carotid arteries were prepared and severed. End-to-end anastomoses were performed using the VJ device on one side and the classical running suture technique on the other side. Animals were followed-up with Duplex-scan every 3 months and sacrificed after 12 months. Histopathological analysis was carried out. RESULTS: In 20 animals all 22 sutureless anastomoses were successfully completed in less than 2 min versus 6 +/- 3 min for running suture. Duplex showed the occlusion of three controls and one sutureless anastomosis. Two controls and one sutureless had stenosis >50%. Histology showed very thin layer of myointimal hyperplasia (50 +/- 10 microm) in the sutureless group versus 300 +/- 27 microm in the control. No significant inflammatory reaction was detected. CONCLUSIONS: VJ provides edge-to-edge vascular repair that can be considered the most physiological way to restore vessel continuity. For the first time, in healthy sheep, an anastomotic device provided better results than suture technique.
Resumo:
In proton magnetic resonance imaging (MRI) metallic substances lead to magnetic field distortions that often result in signal voids in the adjacent anatomic structures. Thus, metallic objects and superparamagnetic iron oxide (SPIO)-labeled cells appear as hypointense artifacts that obscure the underlying anatomy. The ability to illuminate these structures with positive contrast would enhance noninvasive MR tracking of cellular therapeutics. Therefore, an MRI methodology that selectively highlights areas of metallic objects has been developed. Inversion-recovery with ON-resonant water suppression (IRON) employs inversion of the magnetization in conjunction with a spectrally-selective on-resonant saturation prepulse. If imaging is performed after these prepulses, positive signal is obtained from off-resonant protons in close proximity to the metallic objects. The first successful use of IRON to produce positive contrast in areas of metallic spheres and SPIO-labeled stem cells in vitro and in vivo is presented.
Resumo:
A 41-year-old woman who worked in a furniture plant was admitted to hospital for acute dyspnea that had developed a few hours she marked pieces of "Alcantara" material with a heated metallic blade. The chest x-ray showed a restrictive syndrome. The lymphocyte count was high in the bronchioalveolar lavage fluid with a CD4/CD8 ratio of 0.11, leading to the diagnosis of alveolitis. Investigations at the work place allowed identification and evaluation of the causal agent. Alcantara is a synthetic fabric composed of 70% polyurethane fibers, which when burned produces isocyanate monomers. After eliminating exposure and institution of corticosteroid therapy, the outcome was good with complete recovery. The risk was eliminated by changing the work procedure. This risk has not been reported earlier for furniture manufacture.
Resumo:
BACKGROUND AND PURPOSE: Electrical bioimpedance spectroscopy (BIS) allows the evaluation of limb extracellular fluid (R0) and total fluid (Rinf). BIS could facilitate post-surgical oedema evaluation after total knee arthroplasty (TKA), as it is easily performed and is non-invasive. However, neither its applicability in this context nor the influence of metallic implants on measurement has been evaluated. The aim of this study was to evaluate the influence of TKA implants on the BIS R0 and Rinf variables used for oedema evaluation. METHOD: This was a prospective non-randomized comparative clinical trial. One oedema-free group of patients with TKA was compared with a group presenting similar characteristics except for the arthroplasty, to assess the influence of the implant on BIS measurement in the absence of oedema. The TKA group included 15 patients who had undergone surgery more than a year previously, and the control group included 19 patients awaiting TKA surgery. Volume and perimeter measurements served as reference criterions. The lower limb percentage differences for BIS, knee perimeter and volume were calculated. The significance of differences between groups was calculated for all measurement methods, using the Mann-Whitney test. The setting was a Department of Orthopedic Surgery and Traumatology in a university hospital. RESULTS: The differences between groups were not significant for R0, Rinf, volume and perimeter. R0 showed the smallest mean difference in limb percentage difference between groups [means (SD): TKA 3.98 (8.09), controls 3.97 (5.16)]. CONCLUSIONS: The lower-leg percentage difference in the TKA group is comparable with that of healthy subjects. R0 can be used for oedema evaluation following TKA surgery, as there was no sign of alteration from the metallic implant. These findings indicate the potential for early oedema evaluation after TKA. More research is warranted to extensively validate the application of BIS for oedema evaluation after TKA. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Silver has been demonstrated to be a powerful cationization agent in mass spectrometry (MS) for various olefinic species such as cholesterol and fatty acids. This work explores the utility of metallic silver sputtering on tissue sections for high resolution imaging mass spectrometry (IMS) of olefins by laser desorption ionization (LDI). For this purpose, sputtered silver coating thickness was optimized on an assorted selection of mouse and rat tissues including brain, kidney, liver, and testis. For mouse brain tissue section, the thickness was adjusted to 23 ± 2 nm of silver to prevent ion suppression effects associated with a higher cholesterol and lipid content. On all other tissues, a thickness of at 16 ± 2 nm provided the best desorption/ionization efficiency. Characterization of the species by MS/MS showed a wide variety of olefinic compounds allowing the IMS of different lipid classes including cholesterol, arachidonic acid, docosahexaenoic acid, and triacylglyceride 52:3. A range of spatial resolutions for IMS were investigated from 150 μm down to the high resolution cellular range at 5 μm. The applicability of direct on-tissue silver sputtering to LDI-IMS of cholesterol and other olefinic compounds presents a novel approach to improve the amount of information that can be obtained from tissue sections. This IMS strategy is thus of interest for providing new biological insights on the role of cholesterol and other olefins in physiological pathways or disease.
Resumo:
A route of accumulation and elimination of therapeutic engineered nanoparticles (NPs) may be the kidney. Therefore, the interactions of different solid-core inorganic NPs (titanium-, silica-, and iron oxide-based NPs) were studied in vitro with the MDCK and LLC-PK epithelial cells as representative cells of the renal epithelia. Following cell exposure to the NPs, observations include cytotoxicity for oleic acid-coated iron oxide NPs, the production of reactive oxygen species for titanium dioxide NPs, and cell depletion of thiols for uncoated iron oxide NPs, whereas for silica NPs an apparent rapid and short-lived increase of thiol levels in both cell lines was observed. Following cell exposure to metallic NPs, the expression of the tranferrin receptor/CD71 was decreased in both cells by iron oxide NPs, but only in MDCK cells by titanium dioxide NPs. The tight association, then subsequent release of NPs by MDCK and LLC-PK kidney epithelial cells, showed that following exposure to the NPs, only MDCK cells could release iron oxide NPs, whereas both cells released titanium dioxide NPs. No transfer of any solid-core NPs across the cell layers was observed.
Resumo:
This paper describes the development of a polyimide/SU-8 catheter-tip MEMS gauge pressure sensor. Finite element analysis was used to investigate critical parameters, impacting on the device design and sensing characteristics. The sensing element of the device was fabricated by polyimide-based micromachining on a flexible membrane, using embedded thin-film metallic wires as piezoresistive elements. A chamber containing this flexible membrane was sealed using an adapted SU-8 bonding technique. The device was evaluated experimentally and its overall performance compared with a commercial silicon-based pressure sensor. Furthermore, the device use was demonstrated by measuring blood pressure and heart rate in vivo.
Resumo:
AIM: Specific factors responsible for interindividual variability should be identified and their contribution quantified to improve the usefulness of biological monitoring. Among others, age is an easily identifiable determinant, which could play an important impact on biological variability. MATERIALS AND METHODS: A compartmental toxicokinetic model developed in previous studies for a series of metallic and organic compounds was applied to the description of age differences. Young male physiological and metabolic parameters, based on Reference Man information, were taken from preceding studies and were modified to take into account age based on available information about age differences. RESULTS: Numerical simulation using the kinetic model with the modified parameters indicates in some cases important differences due to age. The expected changes are mostly of the order of 10-20%, but differences up to 50% were observed in some cases. CONCLUSION: These differences appear to depend on the chemical and on the biological entity considered. Further work should be done to improve our estimates of these parameters, by considering for example uncertainty and variability in these parameters. [Authors]
Resumo:
Purpose: Cervical foraminal injection performed with a direct foraminal approach may induce serious neurologic complications. We describe a technique of CT-guided cervical facet joint (CFJ) injection as an indirect foraminal injection, including feasibility and diffusion pathways of the contrast agent. Methods and materials: Retrospective study included 84 punctures in 65 consecutive patients presenting neck pain and/or radiculopathy related to osteoarthritis or soft disc herniation. CT images were obtained from C2 to T1 in supine position, with a metallic landmark on the skin. CFJ punctures were performed by MSK senior radiologists with a lateral approach. CT control of the CFJ opacification was performed after injections of contrast agent (1 ml), followed by slow-acting corticosteroid (25 mg). CFJ opacification was considered as successful when joint space and/or capsular recess opacification occurred. The diffusion of contrast agent in foraminal and epidural spaces was recorded. We assessed the epidural diffusion both on axial and sagittal images, with a classification in two groups (small diffusion or large diffusion). Results: CFJ opacification was successful in 82% (69/84). An epidural and/or foraminal opacification was obtained in 74% (51/69). A foraminal opacification occurred in 92% (47/51) and an epidural opacification in 63% (32/51), with small diffusion in 47% (15/32) and large diffusion in 53% (17/32). No complication occurred. Conclusion: CT- guided CFJ injection is easy to perform and safe. It is most often successful, with a frequent epidural and/or foraminal diffusion of the contrast agent. This technique could be an interesting and safe alternative to foraminal cervical injection.
Resumo:
RATIONALE: Induction of oxidative stress and impairment of the antioxidant defense are considered important biological responses following nanoparticle (NP) exposure. The acellular in vitro dithiothreitol (DTT) assay is proposed to measure the oxidative potential of NP. In addition, DTT can be considered as a model compound of sulfur containing antioxidants. The objective of this work is to evaluate the surface reactivity in solution of a NP panel toward DTT. METHOD: The NP panel was composed of four carbonaceous particles, six types of metal oxides and silver with primary size ranged from 7 to 300 nm. Suspensions were prepared in surfactant solution with 30 min sonication. DTT was used as reductant to evaluate the oxidative properties of the different NP. The determination of the NP ability to catalyze electron transfer from DTT to oxygen was carried out as described in Sauvain et al., Nanotoxicology, 2008, 2:3, 121−129. RESULTS: All the carbonaceous NP catalyzed the oxidation of DTT by oxygen following the mass based order: carbon black > diesel exhaust particle > nanotubes > fullerene. A contrasting reactivity was observed for the metallic NP. Except for nickel oxide and metallic silver, which reacted similarly to the carbonaceous NP, all other metal oxides hindered the oxidation of DTT by oxygen, with ZnO being the most effective one. CONCLUSIONS : DTT was stabilized against oxidation in the presence of metal oxide NP in the solution. This suggests that different chemical interactions take place compared with carbonaceous NP. To explain these differences, we hypothesize that DTT could form complexes with the metal oxide surface (or dissolved metal ions), rendering it less susceptible to oxidation. By analogy, such a process could be thought to apply in biological systems with sulfur−containing antioxidants, reducing their buffer capacity. Such NP could thus contribute to oxidative stress by an alternative mechanism.