113 resultados para Theoretical ecology
Resumo:
The sensitivity of altitudinal and latitudinal tree-line ecotones to climate change, particularly that of temperature, has received much attention. To improve our understanding of the factors affecting tree-line position, we used the spatially explicit dynamic forest model TreeMig. Although well-suited because of its landscape dynamics functions, TreeMig features a parabolic temperature growth response curve, which has recently been questioned. and the species parameters are not specifically calibrated for cold temperatures. Our main goals were to improve the theoretical basis of the temperature growth response curve in the model and develop a method for deriving that curve's parameters from tree-ring data. We replaced the parabola with an asymptotic curve, calibrated for the main species at the subalpine (Swiss Alps: Pinus cembra, Larix decidua, Picea abies) and boreal (Fennoscandia: Pinus sylvestris, Betula pubescens, P. abies) tree-lines. After fitting new parameters, the growth curve matched observed tree-ring widths better. For the subalpine species, the minimum degree-day sum allowing, growth (kDDMin) was lowered by around 100 degree-days; in the case of Larix, the maximum potential ring-width was increased to 5.19 mm. At the boreal tree-line, the kDDMin for P. sylvestris was lowered by 210 degree-days and its maximum ring-width increased to 2.943 mm; for Betula (new in the model) kDDMin was set to 325 degree-days and the maximum ring-width to 2.51 mm; the values from the only boreal sample site for Picea were similar to the subalpine ones, so the same parameters were used. However, adjusting the growth response alone did not improve the model's output concerning species' distributions and their relative importance at tree-line. Minimum winter temperature (MinWiT, mean of the coldest winter month), which controls seedling establishment in TreeMig, proved more important for determining distribution. Picea, P. sylvestris and Betula did not previously have minimum winter temperature limits, so these values were set to the 95th percentile of each species' coldest MinWiT site (respectively -7, -11, -13). In a case study for the Alps, the original and newly calibrated versions of TreeMig were compared with biomass data from the National Forest Inventor), (NFI). Both models gave similar, reasonably realistic results. In conclusion, this method of deriving temperature responses from tree-rings works well. However, regeneration and its underlying factors seem more important for controlling species' distributions than previously thought. More research on regeneration ecology, especially at the upper limit of forests. is needed to improve predictions of tree-line responses to climate change further.
Resumo:
In natural populations, dispersal tends to be limited so that individuals are in local competition with their neighbours. As a consequence, most behaviours tend to have a social component, e.g. they can be selfish, spiteful, cooperative or altruistic as usually considered in social evolutionary theory. How social behaviours translate into fitness costs and benefits depends considerably on life-history features, as well as on local demographic and ecological conditions. Over the last four decades, evolutionists have been able to explore many of the consequences of these factors for the evolution of social behaviours. In this paper, we first recall the main theoretical concepts required to understand social evolution. We then discuss how life history, demography and ecology promote or inhibit the evolution of helping behaviours, but the arguments developed for helping can be extended to essentially any social trait. The analysis suggests that, on a theoretical level, it is possible to contrast three critical benefit-to-cost ratios beyond which costly helping is selected for (three quantitative rules for the evolution of altruism). But comparison between theoretical results and empirical data has always been difficult in the literature, partly because of the perennial question of the scale at which relatedness should be measured under localized dispersal. We then provide three answers to this question.
Resumo:
Ecologically and evolutionarily oriented research on learning has traditionally been carried out on vertebrates and bees. While less sophisticated than those animals, fruit flies (Drosophila) are capable of several forms of learning, and have an advantage of a short generation time, which makes them an ideal system for experimental evolution studies. This review summarizes the insights into evolutionary questions about learning gained in the last decade from evolutionary experiments on Drosophila. These experiments demonstrate that Drosophila have the genetic potential to evolve substantially improved learning performance in ecologically relevant learning tasks. In at least one set of selected populations the improved learning generalized to another task than that used to impose selection, involving a different behavior, different stimuli, and a different sensory channel for the aversive reinforcement. This improvement in learning ability was associated with reduction in other fitness-related traits, such as larval competitive ability and lifespan, pointing out to evolutionary trade-offs of improved learning. These trade-offs were confirmed by other evolutionary experiments where reduction in learning performance was observed as a correlated response to selection for tolerance to larval nutritional stress or for delayed aging. Such trade-offs could be one reason why fruit flies have not fully used up their evolutionary potential for learning ability. Finally, another evolutionary experiment with Drosophila provided the first direct evidence for the long-standing ideas that learning can under some circumstances accelerate and in other slow down genetically-based evolutionary change. These results demonstrate the usefulness of fruit flies as a model system to address evolutionary questions about learning.
Resumo:
Le conseil génétique doit fournir aux individus une information médicale précise et un soutien psychologique. L'importance des principes d'autonomie et de confidentialité, dogmes du conseil génétique, est renforcée par la nouvelle loi suisse (LAGH). Dans certains pays, une grande partie du conseil génétique est assurée par des conseillers en génétique non médecins ayant une formation postgraduée spécifique. Le conseil génétique joue un rôle grandissant dans différents domaines de la médecine. En particulier, il est indispensable dans le contexte du prénatal où les couples reçoivent des informations complexes et doivent bénéficier dun soutien pour prendre une décision. Genetic counselling provides families with accurate medical information and psychological support. Respect and concern for the emotional well-being should be taken into account while discussing genetics aspects and recurrence risks. The importance of autonomy and confidentiality, central to genetic counselling, is reinforced by the new Swiss law (LAGH). In many countries, most of the genetic counselling is provided by genetic counsellors who have a specialised post-graduate training. Genetic counselling plays an increasing role in different medical specialities. In particular, it is essential in the context of prenatal and pre-conceptual care, where couples are confronted to complex information and should have access to appropriate support during the decision-making process
Resumo:
Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.
Resumo:
Chromosomal and biochemical investigations of shrews from the genus Crocidura from Crete and Turkey show that C. russula monacha Thomas, 1906 and C. caneae Miller, 1909 are both members of the species C. suaveolens Pallas, 1811. C. russula zimmermanni Wettstein, 1953. The population of C. suaveolens in Crete, whose presence on the island dates from at least 3500 years b.p. is biochemically very similar to those of C. suaveolens from Turkey. The same set of electrophoretic data suggests that C. suaveolens from Cyprus became isolated from main land populations much earlier. C. zimmermanni shows closer phylogenetic relationships with C. leucodon and C. suaveolens, than with C. russula. endemic in Crete, C. zimmermanni is syntopic with C, suaveolens at medium and high altitudes, but has been eliminated by the latter in the fertile lowland plains.
Resumo:
This study proposes a theoretical model describing the electrostatically driven step of the alpha 1 b-adrenergic receptor (AR)-G protein recognition. The comparative analysis of the structural-dynamics features of functionally different receptor forms, i.e., the wild type (ground state) and its constitutively active mutants D142A and A293E, was instrumental to gain insight on the receptor-G protein electrostatic and steric complementarity. Rigid body docking simulations between the different forms of the alpha 1 b-AR and the heterotrimeric G alpha q, G alpha s, G alpha i1, and G alpha t suggest that the cytosolic crevice shared by the active receptor and including the second and the third intracellular loops as well as the cytosolic extension of helices 5 and 6, represents the receptor surface with docking complementarity with the G protein. On the other hand, the G protein solvent-exposed portions that recognize the intracellular loops of the activated receptors are the N-terminal portion of alpha 3, alpha G, the alpha G/alpha 4 loop, alpha 4, the alpha 4/beta 6 loop, alpha 5, and the C-terminus. Docking simulations suggest that the two constitutively active mutants D142A and A293E recognize different G proteins with similar selectivity orders, i.e., G alpha q approximately equal to G alpha s > G alpha i > G alpha t. The theoretical models herein proposed might provide useful suggestions for new experiments aiming at exploring the receptor-G protein interface.
Resumo:
Eusocial societies are traditionally characterized by a reproductive division of labor, an overlap of generations, and cooperative care of the breeders' young. Eusociality was once thought to occur only in termites, ants, and some bee and wasp species, but striking evolutionary convergences have recently become apparent between the societies of these insects and those of cooperatively breeding birds and mammals. These parallels have blurred distinctions between cooperative breeding and eusociality, leading to calls for either drastically restricting or expanding wage of these terms. We favor the latter approach. Cooperative breeding and eusociality are not discrete phenomena, but rather form a continuum of fundamentally similar social systems whose main differences lie in the distribution of lifetime reproductive success among group members. Therefore we propose to array vertebrate and invertebrate cooperative breeders along a common axis, representing a standardized measure of reproductive variance, and to drop such (loaded) terms as ''primitive'' and ''advanced'' eusociality. The terminology we propose unites all occurrences of alloparental helping of kin under a single theoretical umbrella (e.g., Hamilton's rule). Thus, cooperatively breeding vertebrates can be regarded as eusocial, just as eusocial inverbrates are cooperative breeders. We believe this integrated approach will foster potentially revealing cross-taxon comparisons, which are essential to understanding social evolution in birds, mammals, and in sects.
Resumo:
CONTENTS: Summary 28 I. Historic background and introduction 29 II. Diversity of cardenolide forms 29 III. Biosynthesis 30 IV. Cardenolide variation among plant parts 31 V. Phylogenetic distribution of cardenolides 32 VI. Geographic distribution of cardenolides 34 VII. Ecological genetics of cardenolide production 34 VIII. Environmental regulation of cardenolide production 34 IX. Biotic induction of cardenolides 36 X. Mode of action and toxicity of cardenolides 38 XI. Direct and indirect effects of cardenolides on specialist and generalist insect herbivores 39 XII. Cardenolides and insect oviposition 39 XIII. Target site insensitivity 40 XIV. Alternative mechanisms of cardenolide resistance 40 XV. Cardenolide sequestration 41 Acknowledgements 42 References 42 SUMMARY: Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na(+) /K(+) -ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Resumo:
Different arbuscular mycorrhizal (AMF) fungal taxa have a differential effect on the growth of co-existing plant species. This means that in order to fully understand the role of these fungi in plant communities, information is needed on whether the symbiosis is specific. In this chapter, I briefly review the ecological consequences of specificity versus non-specificity in the arbuscular mycorrhizal symbiosis on plant ecology. Both from a theoretical approach, and based on observations, there has been an underlying assumption that no specificity exists in the arbuscular mycorrhizal symbiosis. I consider why these assumptions have been made. Direct evidence for or against specificity in the symbiosis is scant and the reason is mainly due to the difficulty in describing AMF community structure in natural communities (see Clapp et al., Chap.8, this Vol.). Here, I take an evolutionary, as well as an ecological, approach to look at the evidence that predicts that evolution of specificity in the arbuscular mycorrhizal symbiosis could occur. I then consider alternative hypotheses and evidence that could explain why the evolution of specificity might not occur. These hypotheses are based on the growth habit, reproductive strategies and foraging behaviour of AMF and on new findings concerning ANF genetics.
Resumo:
Niche conservatism, the tendency of a species niche to remain unchanged over time, is often assumed when discussing, explaining or predicting biogeographical patterns. Unfortunately, there has been no basis for predicting niche dynamics over relevant timescales, from tens to a few hundreds of years. The recent application of species distribution models (SDMs) and phylogenetic methods to analysis of niche characteristics has provided insight to niche dynamics. Niche shifts and conservatism have both occurred within the last 100 years, with recent speciation events, and deep within clades of species. There is increasing evidence that coordinated application of these methods can help to identify species which likely fulfill one key assumption in the predictive application of SDMs: an unchanging niche. This will improve confidence in SDM-based predictions of the impacts of climate change and species invasions on species distributions and biodiversity.