76 resultados para THERMOLUMINESCENCE DOSIMETRY PHOSPHOR
Resumo:
PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.
Resumo:
Dose kernel convolution (DK) methods have been proposed to speed up absorbed dose calculations in molecular radionuclide therapy. Our aim was to evaluate the impact of tissue density heterogeneities (TDH) on dosimetry when using a DK method and to propose a simple density-correction method. METHODS: This study has been conducted on 3 clinical cases: case 1, non-Hodgkin lymphoma treated with (131)I-tositumomab; case 2, a neuroendocrine tumor treatment simulated with (177)Lu-peptides; and case 3, hepatocellular carcinoma treated with (90)Y-microspheres. Absorbed dose calculations were performed using a direct Monte Carlo approach accounting for TDH (3D-RD), and a DK approach (VoxelDose, or VD). For each individual voxel, the VD absorbed dose, D(VD), calculated assuming uniform density, was corrected for density, giving D(VDd). The average 3D-RD absorbed dose values, D(3DRD), were compared with D(VD) and D(VDd), using the relative difference Δ(VD/3DRD). At the voxel level, density-binned Δ(VD/3DRD) and Δ(VDd/3DRD) were plotted against ρ and fitted with a linear regression. RESULTS: The D(VD) calculations showed a good agreement with D(3DRD). Δ(VD/3DRD) was less than 3.5%, except for the tumor of case 1 (5.9%) and the renal cortex of case 2 (5.6%). At the voxel level, the Δ(VD/3DRD) range was 0%-14% for cases 1 and 2, and -3% to 7% for case 3. All 3 cases showed a linear relationship between voxel bin-averaged Δ(VD/3DRD) and density, ρ: case 1 (Δ = -0.56ρ + 0.62, R(2) = 0.93), case 2 (Δ = -0.91ρ + 0.96, R(2) = 0.99), and case 3 (Δ = -0.69ρ + 0.72, R(2) = 0.91). The density correction improved the agreement of the DK method with the Monte Carlo approach (Δ(VDd/3DRD) < 1.1%), but with a lesser extent for the tumor of case 1 (3.1%). At the voxel level, the Δ(VDd/3DRD) range decreased for the 3 clinical cases (case 1, -1% to 4%; case 2, -0.5% to 1.5%, and -1.5% to 2%). No more linear regression existed for cases 2 and 3, contrary to case 1 (Δ = 0.41ρ - 0.38, R(2) = 0.88) although the slope in case 1 was less pronounced. CONCLUSION: This study shows a small influence of TDH in the abdominal region for 3 representative clinical cases. A simple density-correction method was proposed and improved the comparison in the absorbed dose calculations when using our voxel S value implementation.
Resumo:
Tumors in non-Hodgkin lymphoma (NHL) patients are often proximal to the major blood vessels in the abdomen or neck. In external-beam radiotherapy, these tumors present a challenge because imaging resolution prevents the beam from being targeted to the tumor lesion without also irradiating the artery wall. This problem has led to potentially life-threatening delayed toxicity. Because radioimmunotherapy has resulted in long-term survival of NHL patients, we investigated whether the absorbed dose (AD) to the artery wall in radioimmunotherapy of NHL is of potential concern for delayed toxicity. SPECT resolution is not sufficient to enable dosimetric analysis of anatomic features of the thickness of the aortic wall. Therefore, we present a model of aortic wall toxicity based on data from 4 patients treated with (131)I-tositumomab. METHODS: Four NHL patients with periaortic tumors were administered pretherapeutic (131)I-tositumomab. Abdominal SPECT and whole-body planar images were obtained at 48, 72, and 144 h after tracer administration. Blood-pool activity concentrations were obtained from regions of interest drawn on the heart on the planar images. Tumor and blood activity concentrations, scaled to therapeutic administered activities-both standard and myeloablative-were input into a geometry and tracking model (GEANT, version 4) of the aorta. The simulated energy deposited in the arterial walls was collected and fitted, and the AD and biologic effective dose values to the aortic wall and tumors were obtained for standard therapeutic and hypothetical myeloablative administered activities. RESULTS: Arterial wall ADs from standard therapy were lower (0.6-3.7 Gy) than those typical from external-beam therapy, as were the tumor ADs (1.4-10.5 Gy). The ratios of tumor AD to arterial wall AD were greater for radioimmunotherapy by a factor of 1.9-4.0. For myeloablative therapy, artery wall ADs were in general less than those typical for external-beam therapy (9.4-11.4 Gy for 3 of 4 patients) but comparable for 1 patient (32.6 Gy). CONCLUSION: Blood vessel radiation dose can be estimated using the software package 3D-RD combined with GEANT modeling. The dosimetry analysis suggested that arterial wall toxicity is highly unlikely in standard dose radioimmunotherapy but should be considered a potential concern and limiting factor in myeloablative therapy.
Resumo:
AbstractBreast cancer is one of the most common cancers affecting one in eight women during their lives. Survival rates have increased steadily thanks to early diagnosis with mammography screening and more efficient treatment strategies. Post-operative radiation therapy is a standard of care in the management of breast cancer and has been shown to reduce efficiently both local recurrence rate and breast cancer mortality. Radiation therapy is however associated with some late effects for long-term survivors. Radiation-induced secondary cancer is a relatively rare but severe late effect of radiation therapy. Currently, radiotherapy plans are essentially optimized to maximize tumor control and minimize late deterministic effects (tissue reactions) that are mainly associated with high doses (» 1 Gy). With improved cure rates and new radiation therapy technologies, it is also important to evaluate and minimize secondary cancer risks for different treatment techniques. This is a particularly challenging task due to the large uncertainties in the dose-response relationship.In contrast with late deterministic effects, secondary cancers may be associated with much lower doses and therefore out-of-field doses (also called peripheral doses) that are typically inferior to 1 Gy need to be determined accurately. Out-of-field doses result from patient scatter and head scatter from the treatment unit. These doses are particularly challenging to compute and we characterized it by Monte Carlo (MC) calculation. A detailed MC model of the Siemens Primus linear accelerator has been thoroughly validated with measurements. We investigated the accuracy of such a model for retrospective dosimetry in epidemiological studies on secondary cancers. Considering that patients in such large studies could be treated on a variety of machines, we assessed the uncertainty in reconstructed peripheral dose due to the variability of peripheral dose among various linac geometries. For large open fields (> 10x10 cm2), the uncertainty would be less than 50%, but for small fields and wedged fields the uncertainty in reconstructed dose could rise up to a factor of 10. It was concluded that such a model could be used for conventional treatments using large open fields only.The MC model of the Siemens Primus linac was then used to compare out-of-field doses for different treatment techniques in a female whole-body CT-based phantom. Current techniques such as conformai wedged-based radiotherapy and hybrid IMRT were investigated and compared to older two-dimensional radiotherapy techniques. MC doses were also compared to those of a commercial Treatment Planning System (TPS). While the TPS is routinely used to determine the dose to the contralateral breast and the ipsilateral lung which are mostly out of the treatment fields, we have shown that these doses may be highly inaccurate depending on the treatment technique investigated. MC shows that hybrid IMRT is dosimetrically similar to three-dimensional wedge-based radiotherapy within the field, but offers substantially reduced doses to out-of-field healthy organs.Finally, many different approaches to risk estimations extracted from the literature were applied to the calculated MC dose distribution. Absolute risks varied substantially as did the ratio of risk between two treatment techniques, reflecting the large uncertainties involved with current risk models. Despite all these uncertainties, the hybrid IMRT investigated resulted in systematically lower cancer risks than any of the other treatment techniques. More epidemiological studies with accurate dosimetry are required in the future to construct robust risk models. In the meantime, any treatment strategy that reduces out-of-field doses to healthy organs should be investigated. Electron radiotherapy might offer interesting possibilities with this regard.RésuméLe cancer du sein affecte une femme sur huit au cours de sa vie. Grâce au dépistage précoce et à des thérapies de plus en plus efficaces, le taux de guérison a augmenté au cours du temps. La radiothérapie postopératoire joue un rôle important dans le traitement du cancer du sein en réduisant le taux de récidive et la mortalité. Malheureusement, la radiothérapie peut aussi induire des toxicités tardives chez les patients guéris. En particulier, les cancers secondaires radio-induits sont une complication rare mais sévère de la radiothérapie. En routine clinique, les plans de radiothérapie sont essentiellement optimisées pour un contrôle local le plus élevé possible tout en minimisant les réactions tissulaires tardives qui sont essentiellement associées avec des hautes doses (» 1 Gy). Toutefois, avec l'introduction de différentes nouvelles techniques et avec l'augmentation des taux de survie, il devient impératif d'évaluer et de minimiser les risques de cancer secondaire pour différentes techniques de traitement. Une telle évaluation du risque est une tâche ardue étant donné les nombreuses incertitudes liées à la relation dose-risque.Contrairement aux effets tissulaires, les cancers secondaires peuvent aussi être induits par des basses doses dans des organes qui se trouvent hors des champs d'irradiation. Ces organes reçoivent des doses périphériques typiquement inférieures à 1 Gy qui résultent du diffusé du patient et du diffusé de l'accélérateur. Ces doses sont difficiles à calculer précisément, mais les algorithmes Monte Carlo (MC) permettent de les estimer avec une bonne précision. Un modèle MC détaillé de l'accélérateur Primus de Siemens a été élaboré et validé avec des mesures. La précision de ce modèle a également été déterminée pour la reconstruction de dose en épidémiologie. Si on considère que les patients inclus dans de larges cohortes sont traités sur une variété de machines, l'incertitude dans la reconstruction de dose périphérique a été étudiée en fonction de la variabilité de la dose périphérique pour différents types d'accélérateurs. Pour de grands champs (> 10x10 cm ), l'incertitude est inférieure à 50%, mais pour de petits champs et des champs filtrés, l'incertitude de la dose peut monter jusqu'à un facteur 10. En conclusion, un tel modèle ne peut être utilisé que pour les traitements conventionnels utilisant des grands champs.Le modèle MC de l'accélérateur Primus a été utilisé ensuite pour déterminer la dose périphérique pour différentes techniques dans un fantôme corps entier basé sur des coupes CT d'une patiente. Les techniques actuelles utilisant des champs filtrés ou encore l'IMRT hybride ont été étudiées et comparées par rapport aux techniques plus anciennes. Les doses calculées par MC ont été comparées à celles obtenues d'un logiciel de planification commercial (TPS). Alors que le TPS est utilisé en routine pour déterminer la dose au sein contralatéral et au poumon ipsilatéral qui sont principalement hors des faisceaux, nous avons montré que ces doses peuvent être plus ou moins précises selon la technTque étudiée. Les calculs MC montrent que la technique IMRT est dosimétriquement équivalente à celle basée sur des champs filtrés à l'intérieur des champs de traitement, mais offre une réduction importante de la dose aux organes périphériques.Finalement différents modèles de risque ont été étudiés sur la base des distributions de dose calculées par MC. Les risques absolus et le rapport des risques entre deux techniques de traitement varient grandement, ce qui reflète les grandes incertitudes liées aux différents modèles de risque. Malgré ces incertitudes, on a pu montrer que la technique IMRT offrait une réduction du risque systématique par rapport aux autres techniques. En attendant des données épidémiologiques supplémentaires sur la relation dose-risque, toute technique offrant une réduction des doses périphériques aux organes sains mérite d'être étudiée. La radiothérapie avec des électrons offre à ce titre des possibilités intéressantes.
Resumo:
A method of objectively determining imaging performance for a mammography quality assurance programme for digital systems was developed. The method is based on the assessment of the visibility of a spherical microcalcification of 0.2 mm using a quasi-ideal observer model. It requires the assessment of the spatial resolution (modulation transfer function) and the noise power spectra of the systems. The contrast is measured using a 0.2-mm thick Al sheet and Polymethylmethacrylate (PMMA) blocks. The minimal image quality was defined as that giving a target contrast-to-noise ratio (CNR) of 5.4. Several evaluations of this objective method for evaluating image quality in mammography quality assurance programmes have been considered on computed radiography (CR) and digital radiography (DR) mammography systems. The measurement gives a threshold CNR necessary to reach the minimum standard image quality required with regards to the visibility of a 0.2-mm microcalcification. This method may replace the CDMAM image evaluation and simplify the threshold contrast visibility test used in mammography quality.
Resumo:
In Switzerland, individuals exposed to the risk of activity intake are required to perform regular monitoring. Monitoring consists in a screening measurement and is meant to be performed using commonly available laboratory instruments. More particularly, iodine intake is measured using a surface contamination monitor. The goal of the present paper is to report the calibration method developed for thyroid screening instruments. It consists of measuring the instrument response to a known activity located in the thyroid gland of a standard neck phantom. One issue of this procedure remains that the iodine radioisotopes have a short half-life. Therefore, the adequacy and limitations to simulate the short-lived radionuclides with so-called mock radionuclides of longer half-life were also evaluated. In light of the results, it has been decided to use only the appropriate iodine sources to perform the calibration.
Resumo:
INTRODUCTION: The phase III EORTC 22033-26033/NCIC CE5 intergroup trial compares 50.4 Gy radiotherapy with up-front temozolomide in previously untreated low-grade glioma. We describe the digital EORTC individual case review (ICR) performed to evaluate protocol radiotherapy (RT) compliance. METHODS: Fifty-eight institutions were asked to submit 1-2 randomly selected cases. Digital ICR datasets were uploaded to the EORTC server and accessed by three central reviewers. Twenty-seven parameters were analysed including volume delineation, treatment planning, organ at risk (OAR) dosimetry and verification. Consensus reviews were collated and summary statistics calculated. RESULTS: Fifty-seven of seventy-two requested datasets from forty-eight institutions were technically usable. 31/57 received a major deviation for at least one section. Relocation accuracy was according to protocol in 45. Just over 30% had acceptable target volumes. OAR contours were missing in an average of 25% of cases. Up to one-third of those present were incorrectly drawn while dosimetry was largely protocol compliant. Beam energy was acceptable in 97% and 48 patients had per protocol beam arrangements. CONCLUSIONS: Digital RT plan submission and review within the EORTC 22033-26033 ICR provide a solid foundation for future quality assurance procedures. Strict evaluation resulted in overall grades of minor and major deviation for 37% and 32%, respectively.
Resumo:
A wide variation in patient exposure has been observed in interventional radiology and cardiology. The purpose of this study was to investigate the patient dose from fluoroscopy-guided procedures performed in non-academic centres when compared with academic centres. Four procedures (coronary angiography, percutaneous coronary intervention, angiography of the lower limbs and percutaneous transluminal angioplasty of the lower limbs) were evaluated. Data on the dose-area product, fluoroscopy time and number of images for 1000 procedures were obtained from 23 non-academic centres and compared with data from 5 academic centres. No differences were found for cardiology procedures performed in non-academic centres versus academic ones. However, significantly lower doses were delivered to patients for procedures of the lower limbs when they were performed in non-academic centres. This may be due to more complex procedures performed in the academic centres. Comparison between the centres showed a great variation in the patient dose for these lower limb procedures.
Resumo:
The main objective of WP1 of the ORAMED (Optimization of RAdiation protection for MEDical staff) project is to obtain a set of standardised data on extremity and eye lens doses for staff in interventional radiology (IR) and cardiology (IC) and to optimise staff protection. A coordinated measurement program in different hospitals in Europe will help towards this direction. This study aims at analysing the first results of the measurement campaign performed in IR and IC procedures in 34 European hospitals. The highest doses were found for pacemakers, renal angioplasties and embolisations. Left finger and wrist seem to receive the highest extremity doses, while the highest eye lens doses are measured during embolisations. Finally, it was concluded that it is difficult to find a general correlation between kerma area product and extremity or eye lens doses.
Resumo:
The age of the patient is of prime importance when assessing the radiological risk to patients due to medical X-ray exposures and the total detriment to the population due to radiodiagnostics. In order to take into account the age-specific radiosensitivity, three age groups are considered: children, adults and the elderly. In this work, the relative number of examinations carried out on paediatric and geriatric patients is established, compared with adult patients, for radiodiagnostics as a whole, for dental and medical radiology, for 8 radiological modalities as well as for 40 types of X-ray examinations. The relative numbers of X-ray examinations are determined based on the corresponding age distributions of patients and that of the general population. Two broad groups of X-ray examinations may be defined. Group A comprises conventional radiography, fluoroscopy and computed tomography; for this group a paediatric patient undergoes half the number of examinations as that of an adult, and a geriatric patient undergoes 2.5 times more. Group B comprises angiography and interventional procedures; for this group a paediatric patient undergoes a one-fourth of the number of examinations carried out on an adult, and a geriatric patient undergoes five times more.
Resumo:
PURPOSE: It is generally assumed that the biodistribution and pharmacokinetics of radiolabelled antibodies remain similar between dosimetric and therapeutic injections in radioimmunotherapy. However, circulation half-lives of unlabelled rituximab have been reported to increase progressively after the weekly injections of standard therapy doses. The aim of this study was to evaluate the evolution of the pharmacokinetics of repeated 131I-rituximab injections during treatment with unlabelled rituximab in patients with non-Hodgkin's lymphoma (NHL). METHODS: Patients received standard weekly therapy with rituximab (375 mg/m2) for 4 weeks and a fifth injection at 7 or 8 weeks. Each patient had three additional injections of 185 MBq 131I-rituximab in either treatment weeks 1, 3 and 7 (two patients) or weeks 2, 4 and 8 (two patients). The 12 radiolabelled antibody injections were followed by three whole-body (WB) scintigraphic studies during 1 week and blood sampling on the same occasions. Additional WB scans were performed after 2 and 4 weeks post 131I-rituximab injection prior to the second and third injections, respectively. RESULTS: A single exponential radioactivity decrease for WB, liver, spleen, kidneys and heart was observed. Biodistribution and half-lives were patient specific, and without significant change after the second or third injection compared with the first one. Blood T(1/2)beta, calculated from the sequential blood samples and fitted to a bi-exponential curve, was similar to the T(1/2) of heart and liver but shorter than that of WB and kidneys. Effective radiation dose calculated from attenuation-corrected WB scans and blood using Mirdose3.1 was 0.53+0.05 mSv/MBq (range 0.48-0.59 mSv/MBq). Radiation dose was highest for spleen and kidneys, followed by heart and liver. CONCLUSION: These results show that the biodistribution and tissue kinetics of 131I-rituximab, while specific to each patient, remained constant during unlabelled antibody therapy. RIT radiation doses can therefore be reliably extrapolated from a preceding dosimetry study.
Resumo:
Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating for camera saturation which takes into account the variable activity in the field of view, i.e. time-dependent dead-time effects. The algorithm presented here accomplishes this task.
Resumo:
The aim of this work is to compare two methods used for determining the proper shielding of computed tomography (CT) rooms while considering recent technological advances in CT scanners. The approaches of the German Institute for Standardisation and the US National Council on Radiation Protection and Measurements were compared and a series of radiation measurements were performed in several CT rooms at the Lausanne University Hospital. The following three-step procedure is proposed for assuring sufficient shielding of rooms hosting new CT units with spiral mode acquisition and various X-ray beam collimation widths: (1) calculate the ambient equivalent dose for a representative average weekly dose length product at the position where shielding is required; (2) from the maximum permissible weekly dose at the location of interest, calculate the transmission factor F that must be taken to ensure proper shielding and (3) convert the transmission factor into a thickness of lead shielding. A similar approach could be adopted to use when designing shielding for fluoroscopy rooms, where the basic quantity would be the dose area product instead of the load of current (milliampere-minute).
Resumo:
Excessive exposure to solar UV light is the main cause of skin cancers in humans. UV exposure depends on environmental as well as individual factors related to activity. Although outdoor occupational activities contribute significantly to the individual dose received, data on effective exposure are scarce and limited to a few occupations. A study was undertaken in order to assess effective short-term exposure among building workers and characterize the influence of individual and local factors on exposure. The effective exposure of construction workers in a mountainous area in the southern part of Switzerland was investigated through short-term dosimetry (97 dosimeters). Three altitudes, of about 500, 1500 and 2500 m were considered. Individual measurements over 20 working periods were performed using Spore film dosimeters on five body locations. The postural activity of workers was concomitantly recorded and static UV measurements were also performed. Effective exposure among building workers was high and exceeded occupational recommendations, for all individuals for at least one body location. The mean daily UV dose in plain was 11.9 SED (0.0-31.3 SED), in middle mountain 21.4 SED (6.6-46.8 SED) and in high mountain 28.6 SED (0.0-91.1 SED). Measured doses between workers and anatomical locations exhibited a high variability, stressing the role of local exposure conditions and individual factors. Short-term effective exposure ranged between 0 and 200% of ambient irradiation, indicating the occurrence of intense, subacute exposures. A predictive irradiation model was developed to investigate the role of individual factors. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure, and were also found to account more than altitude on the total variance of effective daily exposures. Targeted sensitization actions through professional information channels and specific prevention messages are recommended. Altitude outdoor workers should also benefit from preventive medical examination.