32 resultados para Situated learning and knowledge
Resumo:
We present a new framework for large-scale data clustering. The main idea is to modify functional dimensionality reduction techniques to directly optimize over discrete labels using stochastic gradient descent. Compared to methods like spectral clustering our approach solves a single optimization problem, rather than an ad-hoc two-stage optimization approach, does not require a matrix inversion, can easily encode prior knowledge in the set of implementable functions, and does not have an ?out-of-sample? problem. Experimental results on both artificial and real-world datasets show the usefulness of our approach.
Resumo:
The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.
Resumo:
Knockout mice lacking the alpha-1b adrenergic receptor were tested in behavioral experiments. Reaction to novelty was first assessed in a simple test in which the time taken by the knockout mice and their littermate controls to enter a second compartment was compared. Then the mice were tested in an open field to which unknown objects were subsequently added. Special novelty was introduced by moving one of the familiar objects to another location in the open field. Spatial behavior and memory were further studied in a homing board test, and in the water maze. The alpha-1b knockout mice showed an enhanced reactivity to new situations. They were faster to enter the new environment, covered longer paths in the open field, and spent more time exploring the new objects. They reacted like controls to modification inducing spatial novelty. In the homing board test, both the knockout mice and the control mice seemed to use a combination of distant visual and proximal olfactory cues, showing place preference only if the two types of cues were redundant. In the water maze the alpha-1b knockout mice were unable to learn the task, which was confirmed in a probe trial without platform. They were perfectly able, however, to escape in a visible platform procedure. These results confirm previous findings showing that the noradrenergic pathway is important for the modulation of behaviors such as reaction to novelty and exploration, and suggest that this is mediated, at least partly, through the alpha-1b adrenergic receptors. The lack of alpha-1b adrenergic receptors in spatial orientation does not seem important in cue-rich tasks but may interfere with orientation in situations providing distant cues only.
Resumo:
The existing literature shows that social interactions in individuals' networks affect their reproductive attitudes and behaviors through three mechanisms: social influence, social learning, and social support. In this paper, we discuss to what extent the Theory of Planned Behavior (TPB), an individual based theorization of intentions and behavior used to model fertility, takes these social mechanisms into account. We argue that the TPB already integrates social influence and that it could easily accommodate the two other social network mechanisms. By doing so, the theory would be enriched in two respects. First, it will explain more completely how macro level changes eventually ends in micro level changes in behavioral intentions. Indeed, mechanisms of social influence may explain why changes in representations of parenthood and ideal family size can be slower than changes in socio-economic conditions and institutions. Social learning mechanisms should also be considered, since they are crucial to distinguish who adopts new behavioral beliefs and practices, when change at the macro level finally sinks in. Secondly, relationships are a capital of services that can complement institutional offering (informal child care) as well as a capital of knowledge which help individuals navigate in a complex institutional reality, providing a crucial element to explain heterogeneity in the successful realization of fertility intentions across individuals. We develop specific hypotheses concerning the effect of social interactions on fertility intentions and their realization to conclude with a critical review of the existing surveys suitable to test them and their limits.
Resumo:
Sleep spindles are distinctive electroencephalographic (EEG) oscillations emerging during non-rapid-eye-movement sleep (NREMS) that have been implicated in multiple brain functions, including sleep quality, sensory gating, learning, and memory. Despite considerable knowledge about the mechanisms underlying these neuronal rhythms, their function remains poorly understood and current views are largely based on correlational evidence. Here, we review recent studies in humans and rodents that have begun to broaden our understanding of the role of spindles in the normal and disordered brain. We show that newly identified molecular substrates of spindle oscillations, in combination with evolving technological progress, offer novel targets and tools to selectively manipulate spindles and dissect their role in sleep-dependent processes.
Resumo:
INTRODUCTION: Systematic literature reviews provide best evidence, but are underused by clinicians. Thus, integrating Cochrane reviews into continuing medical education (CME) is challenging. We designed a pilot CME program where summaries of Cochrane reviews (Courriels Cochrane) were disseminated by e-mail. Program participants automatically received CME credit for each Courriel Cochrane they rated. The feasibility of this program is reported (delivery, participation, and participant evaluation). METHOD: We recruited French-speaking physicians through the Canadian Medical Association. Program delivery and participation were documented. Participants rated the informational value of Courriels Cochrane using the Information Assessment Method (IAM), which documented their reflective learning (relevance, cognitive impact, use for a patient, expected health benefits). IAM responses were aggregated and analyzed. RESULTS: The program was delivered as planned. Thirty Courriels Cochrane were delivered to 985 physicians, and 127 (12.9%) completed at least one IAM questionnaire. Out of 1109 Courriels Cochrane ratings, 973 (87.7%) conta-ined 1 or more types of positive cognitive impact, while 835 (75.3%) were clinically relevant. Participants reported the use of information for a patient and expected health benefits in 595 (53.7%) and 569 (51.3%) ratings, respectively. DISCUSSION: Program delivery required partnering with 5 organizations. Participants valued Courriels Cochrane. IAM ratings documented their reflective learning. The aggregation of IAM ratings documented 3 levels of CME outcomes: participation, learning, and performance. This evaluation study demonstrates the feasibility of the Courriels Cochrane as an approach to further disseminate Cochrane systematic literature reviews to clinicians and document self-reported knowledge translation associated with Cochrane reviews.
Resumo:
Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.
Resumo:
ABSTRACT : A firm's competitive advantage can arise from internal resources as well as from an interfirm network. -This dissertation investigates the competitive advantage of a firm involved in an innovation network by integrating strategic management theory and social network theory. It develops theory and provides empirical evidence that illustrates how a networked firm enables the network value and appropriates this value in an optimal way according to its strategic purpose. The four inter-related essays in this dissertation provide a framework that sheds light on the extraction of value from an innovation network by managing and designing the network in a proactive manner. The first essay reviews research in social network theory and knowledge transfer management, and identifies the crucial factors of innovation network configuration for a firm's learning performance or innovation output. The findings suggest that network structure, network relationship, and network position all impact on a firm's performance. Although the previous literature indicates that there are disagreements about the impact of dense or spare structure, as well as strong or weak ties, case evidence from Chinese software companies reveals that dense and strong connections with partners are positively associated with firms' performance. The second essay is a theoretical essay that illustrates the limitations of social network theory for explaining the source of network value and offers a new theoretical model that applies resource-based view to network environments. It suggests that network configurations, such as network structure, network relationship and network position, can be considered important network resources. In addition, this essay introduces the concept of network capability, and suggests that four types of network capabilities play an important role in unlocking the potential value of network resources and determining the distribution of network rents between partners. This essay also highlights the contingent effects of network capability on a firm's innovation output, and explains how the different impacts of network capability depend on a firm's strategic choices. This new theoretical model has been pre-tested with a case study of China software industry, which enhances the internal validity of this theory. The third essay addresses the questions of what impact network capability has on firm innovation performance and what are the antecedent factors of network capability. This essay employs a structural equation modelling methodology that uses a sample of 211 Chinese Hi-tech firms. It develops a measurement of network capability and reveals that networked firms deal with cooperation between, and coordination with partners on different levels according to their levels of network capability. The empirical results also suggests that IT maturity, the openness of culture, management system involved, and experience with network activities are antecedents of network capabilities. Furthermore, the two-group analysis of the role of international partner(s) shows that when there is a culture and norm gap between foreign partners, a firm must mobilize more resources and effort to improve its performance with respect to its innovation network. The fourth essay addresses the way in which network capabilities influence firm innovation performance. By using hierarchical multiple regression with data from Chinese Hi-tech firms, the findings suggest that there is a significant partial mediating effect of knowledge transfer on the relationships between network capabilities and innovation performance. The findings also reveal that the impacts of network capabilities divert with the environment and strategic decision the firm has made: exploration or exploitation. Network constructing capability provides a greater positive impact on and yields more contributions to innovation performance than does network operating capability in an exploration network. Network operating capability is more important than network constructing capability for innovative firms in an exploitation network. Therefore, these findings highlight that the firm can shape the innovation network proactively for better benefits, but when it does so, it should adjust its focus and change its efforts in accordance with its innovation purposes or strategic orientation.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a key incretin hormone, released from intestine after a meal, producing a glucose-dependent insulin secretion. The GIP receptor (GIPR) is expressed on pyramidal neurons in the cortex and hippocampus, and GIP is synthesized in a subset of neurons in the brain. However, the role of the GIPR in neuronal signaling is not clear. In this study, we used a mouse strain with GIPR gene deletion (GIPR KO) to elucidate the role of the GIPR in neuronal communication and brain function. Compared with C57BL/6 control mice, GIPR KO mice displayed higher locomotor activity in an open-field task. Impairment of recognition and spatial learning and memory of GIPR KO mice were found in the object recognition task and a spatial water maze task, respectively. In an object location task, no impairment was found. GIPR KO mice also showed impaired synaptic plasticity in paired-pulse facilitation and a block of long-term potentiation in area CA1 of the hippocampus. Moreover, a large decrease in the number of neuronal progenitor cells was found in the dentate gyrus of transgenic mice, although the numbers of young neurons was not changed. Together the results suggest that GIP receptors play an important role in cognition, neurotransmission, and cell proliferation.
Resumo:
Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium.
Resumo:
The capacity to interact socially and share information underlies the success of many animal species, humans included. Researchers of many fields have emphasized the evo¬lutionary significance of how patterns of connections between individuals, or the social networks, and learning abilities affect the information obtained by animal societies. To date, studies have focused on the dynamics either of social networks, or of the spread of information. The present work aims to study them together. We make use of mathematical and computational models to study the dynamics of networks, where social learning and information sharing affect the structure of the population the individuals belong to. The number and strength of the relationships between individuals, in turn, impact the accessibility and the diffusion of the shared information. Moreover, we inves¬tigate how different strategies in the evaluation and choice of interacting partners impact the processes of knowledge acquisition and social structure rearrangement. First, we look at how different evaluations of social interactions affect the availability of the information and the network topology. We compare a first case, where individuals evaluate social exchanges by the amount of information that can be shared by the partner, with a second case, where they evaluate interactions by considering their partners' social status. We show that, even if both strategies take into account the knowledge endowments of the partners, they have very different effects on the system. In particular, we find that the first case generally enables individuals to accumulate higher amounts of information, thanks to the more efficient patterns of social connections they are able to build. Then, we study the effects that homophily, or the tendency to interact with similar partners, has on knowledge accumulation and social structure. We compare the case where individuals who know the same information are more likely to learn socially from each other, to the opposite case, where individuals who know different information are instead more likely to learn socially from each other. We find that it is not trivial to claim which strategy is better than the other. Depending on the possibility of forgetting information, the way new social partners can be chosen, and the population size, we delineate the conditions for which each strategy allows accumulating more information, or in a faster way For these conditions, we also discuss the topological characteristics of the resulting social structure, relating them to the information dynamics outcome. In conclusion, this work paves the road for modeling the joint dynamics of the spread of information among individuals and their social interactions. It also provides a formal framework to study jointly the effects of different strategies in the choice of partners on social structure, and how they favor the accumulation of knowledge in the population. - La capacité d'interagir socialement et de partager des informations est à la base de la réussite de nombreuses espèces animales, y compris les humains. Les chercheurs de nombreux domaines ont souligné l'importance évolutive de la façon dont les modes de connexions entre individus, ou réseaux sociaux et les capacités d'apprentissage affectent les informations obtenues par les sociétés animales. À ce jour, les études se sont concentrées sur la dynamique soit des réseaux sociaux, soit de la diffusion de l'information. Le présent travail a pour but de les étudier ensemble. Nous utilisons des modèles mathématiques et informatiques pour étudier la dynamique des réseaux, où l'apprentissage social et le partage d'information affectent la structure de la population à laquelle les individus appartiennent. Le nombre et la solidité des relations entre les individus ont à leurs tours un impact sur l'accessibilité et la diffusion de l'informa¬tion partagée. Par ailleurs, nous étudions comment les différentes stratégies d'évaluation et de choix des partenaires d'interaction ont une incidence sur les processus d'acquisition des connaissances ainsi que le réarrangement de la structure sociale. Tout d'abord, nous examinons comment des évaluations différentes des interactions sociales influent sur la disponibilité de l'information ainsi que sur la topologie du réseau. Nous comparons un premier cas, où les individus évaluent les échanges sociaux par la quantité d'information qui peut être partagée par le partenaire, avec un second cas, où ils évaluent les interactions en tenant compte du statut social de leurs partenaires. Nous montrons que, même si les deux stratégies prennent en compte le montant de connaissances des partenaires, elles ont des effets très différents sur le système. En particulier, nous constatons que le premier cas permet généralement aux individus d'accumuler de plus grandes quantités d'information, grâce à des modèles de connexions sociales plus efficaces qu'ils sont capables de construire. Ensuite, nous étudions les effets que l'homophilie, ou la tendance à interagir avec des partenaires similaires, a sur l'accumulation des connaissances et la structure sociale. Nous comparons le cas où des personnes qui connaissent les mêmes informations sont plus sus¬ceptibles d'apprendre socialement l'une de l'autre, au cas où les individus qui connaissent des informations différentes sont au contraire plus susceptibles d'apprendre socialement l'un de l'autre. Nous constatons qu'il n'est pas trivial de déterminer quelle stratégie est meilleure que l'autre. En fonction de la possibilité d'oublier l'information, la façon dont les nouveaux partenaires sociaux peuvent être choisis, et la taille de la population, nous déterminons les conditions pour lesquelles chaque stratégie permet d'accumuler plus d'in¬formations, ou d'une manière plus rapide. Pour ces conditions, nous discutons également les caractéristiques topologiques de la structure sociale qui en résulte, les reliant au résultat de la dynamique de l'information. En conclusion, ce travail ouvre la route pour la modélisation de la dynamique conjointe de la diffusion de l'information entre les individus et leurs interactions sociales. Il fournit également un cadre formel pour étudier conjointement les effets de différentes stratégies de choix des partenaires sur la structure sociale et comment elles favorisent l'accumulation de connaissances dans la population.
Resumo:
The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.
Resumo:
This study examined the effects of ibotenic acid-induced lesions of the hippocampus, subiculum and hippocampus +/- subiculum upon the capacity of rats to learn and perform a series of allocentric spatial learning tasks in an open-field water maze. The lesions were made by infusing small volumes of the neurotoxin at a total of 26 (hippocampus) or 20 (subiculum) sites intended to achieve complete target cell loss but minimal extratarget damage. The regional extent and axon-sparing nature of these lesions was evaluated using both cresyl violet and Fink - Heimer stained sections. The behavioural findings indicated that both the hippocampus and subiculum lesions caused impairment to the initial postoperative acquisition of place navigation but did not prevent eventual learning to levels of performance almost as effective as those of controls. However, overtraining of the hippocampus + subiculum lesioned rats did not result in significant place learning. Qualitative observations of the paths taken to find a hidden escape platform indicated that different strategies were deployed by hippocampal and subiculum lesioned groups. Subsequent training on a delayed matching to place task revealed a deficit in all lesioned groups across a range of sample choice intervals, but the subiculum lesioned group was less impaired than the group with the hippocampal lesion. Finally, unoperated control rats given both the initial training and overtraining were later given either a hippocampal lesion or sham surgery. The hippocampal lesioned rats were impaired during a subsequent retention/relearning phase. Together, these findings suggest that total hippocampal cell loss may cause a dual deficit: a slower rate of place learning and a separate navigational impairment. The prospect of unravelling dissociable components of allocentric spatial learning is discussed.