208 resultados para Single Nucleotide Polymorphisms (SNPs)
Resumo:
The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.
Resumo:
OBJECTIVES: Toll-like receptors (TLRs) are innate immune sensors that are integral to resisting chronic and opportunistic infections. Mounting evidence implicates TLR polymorphisms in susceptibilities to various infectious diseases, including HIV-1. We investigated the impact of TLR single nucleotide polymorphisms (SNPs) on clinical outcome in a seroincident cohort of HIV-1-infected volunteers. DESIGN: We analyzed TLR SNPs in 201 antiretroviral treatment-naive HIV-1-infected volunteers from a longitudinal seroincident cohort with regular follow-up intervals (median follow-up 4.2 years, interquartile range 4.4). Participants were stratified into two groups according to either disease progression, defined as peripheral blood CD4(+) T-cell decline over time, or peak and setpoint viral load. METHODS: Haplotype tagging SNPs from TLR2, TLR3, TLR4, and TLR9 were detected by mass array genotyping, and CD4(+) T-cell counts and viral load measurements were determined prior to antiretroviral therapy initiation. The association of TLR haplotypes with viral load and rapid progression was assessed by multivariate regression models using age and sex as covariates. RESULTS: Two TLR4 SNPs in strong linkage disequilibrium [1063 A/G (D299G) and 1363 C/T (T399I)] were more frequent among individuals with high peak viral load compared with low/moderate peak viral load (odds ratio 6.65, 95% confidence interval 2.19-20.46, P < 0.001; adjusted P = 0.002 for 1063 A/G). In addition, a TLR9 SNP previously associated with slow progression was found less frequently among individuals with high viral setpoint compared with low/moderate setpoint (odds ratio 0.29, 95% confidence interval 0.13-0.65, P = 0.003, adjusted P = 0.04). CONCLUSION: This study suggests a potentially new role for TLR4 polymorphisms in HIV-1 peak viral load and confirms a role for TLR9 polymorphisms in disease progression.
Resumo:
Follow-up studies of eating disorders (EDs) suggest outcomes ranging from recovery to chronic illness or death, but predictors of outcome have not been consistently identified. We tested 5151 single-nucleotide polymorphisms (SNPs) in approximately 350 candidate genes for association with recovery from ED in 1878 women. Initial analyses focused on a strictly defined discovery cohort of women who were over age 25 years, carried a lifetime diagnosis of an ED, and for whom data were available regarding the presence (n=361 ongoing symptoms in the past year, ie, 'ill') or absence (n=115 no symptoms in the past year, ie, 'recovered') of ED symptoms. An intronic SNP (rs17536211) in GABRG1 showed the strongest statistical evidence of association (p=4.63 × 10(-6), false discovery rate (FDR)=0.021, odds ratio (OR)=0.46). We replicated these findings in a more liberally defined cohort of women age 25 years or younger (n=464 ill, n=107 recovered; p=0.0336, OR=0.68; combined sample p=4.57 × 10(-6), FDR=0.0049, OR=0.55). Enrichment analyses revealed that GABA (γ-aminobutyric acid) SNPs were over-represented among SNPs associated at p<0.05 in both the discovery (Z=3.64, p=0.0003) and combined cohorts (Z=2.07, p=0.0388). In follow-up phenomic association analyses with a third independent cohort (n=154 ED cases, n=677 controls), rs17536211 was associated with trait anxiety (p=0.049), suggesting a possible mechanism through which this variant may influence ED outcome. These findings could provide new insights into the development of more effective interventions for the most treatment-resistant patients.
Resumo:
Adiponectin serum concentrations are an important biomarker in cardiovascular epidemiology with heritability etimates of 30-70%. However, known genetic variants in the adiponectin gene locus (ADIPOQ) account for only 2%-8% of its variance. As transcription factors are thought to play an under-acknowledged role in carrying functional variants, we hypothesized that genetic polymorphisms in genes coding for the main transcription factors for the ADIPOQ promoter influence adiponectin levels. Single nucleotide polymorphisms (SNPs) at these genes were selected based on the haplotype block structure and previously published evidence to be associated with adiponectin levels. We performed association analyses of the 24 selected SNPs at forkhead box O1 (FOXO1), sterol-regulatory-element-binding transcription factor 1 (SREBF1), sirtuin 1 (SIRT1), peroxisome-proliferator-activated receptor gamma (PPARG) and transcription factor activating enhancer binding protein 2 beta (TFAP2B) gene loci with adiponectin levels in three different European cohorts: SAPHIR (n = 1742), KORA F3 (n = 1636) and CoLaus (n = 5355). In each study population, the association of SNPs with adiponectin levels on log-scale was tested using linear regression adjusted for age, sex and body mass index, applying both an additive and a recessive genetic model. A pooled effect size was obtained by meta-analysis assuming a fixed effects model. We applied a significance threshold of 0.0033 accounting for the multiple testing situation. A significant association was only found for variants within SREBF1 applying an additive genetic model (smallest p-value for rs1889018 on log(adiponectin) = 0.002, β on original scale = -0.217 µg/ml), explaining ∼0.4% of variation of adiponectin levels. Recessive genetic models or haplotype analyses of the FOXO1, SREBF1, SIRT1, TFAPB2B genes or sex-stratified analyses did not reveal additional information on the regulation of adiponectin levels. The role of genetic variations at the SREBF1 gene in regulating adiponectin needs further investigation by functional studies.
Resumo:
BACKGROUND: The clinical course of HIV-1 infection is highly variable among individuals, at least in part as a result of genetic polymorphisms in the host. Toll-like receptors (TLRs) have a key role in innate immunity and mutations in the genes encoding these receptors have been associated with increased or decreased susceptibility to infections. OBJECTIVES: To determine whether single-nucleotide polymorphisms (SNPs) in TLR2-4 and TLR7-9 influenced the natural course of HIV-1 infection. METHODS: Twenty-eight SNPs in TLRs were analysed in HAART-naive HIV-positive patients from the Swiss HIV Cohort Study. The SNPs were detected using Sequenom technology. Haplotypes were inferred using an expectation-maximization algorithm. The CD4 T cell decline was calculated using a least-squares regression. Patients with a rapid CD4 cell decline, less than the 15th percentile, were defined as rapid progressors. The risk of rapid progression associated with SNPs was estimated using a logistic regression model. Other candidate risk factors included age, sex and risk groups (heterosexual, homosexual and intravenous drug use). RESULTS: Two SNPs in TLR9 (1635A/G and +1174G/A) in linkage disequilibrium were associated with the rapid progressor phenotype: for 1635A/G, odds ratio (OR), 3.9 [95% confidence interval (CI),1.7-9.2] for GA versus AA and OR, 4.7 (95% CI,1.9-12.0) for GG versus AA (P = 0.0008). CONCLUSION: Rapid progression of HIV-1 infection was associated with TLR9 polymorphisms. Because of its potential implications for intervention strategies and vaccine developments, additional epidemiological and experimental studies are needed to confirm this association.
Resumo:
BACKGROUND: Chronic kidney disease is associated with cardiovascular disease. We tested for evidence of a shared genetic basis to these traits. STUDY DESIGN: We conducted 2 targeted analyses. First, we examined whether known single-nucleotide polymorphisms (SNPs) underpinning kidney traits were associated with a series of vascular phenotypes. Additionally, we tested whether vascular SNPs were associated with markers of kidney damage. Significance was set to 1.5×10(-4) (0.05/325 tests). SETTING & PARTICIPANTS: Vascular outcomes were analyzed in participants from the AortaGen (20,634), CARDIoGRAM (86,995), CHARGE Eye (15,358), CHARGE IMT (31,181), ICBP (69,395), and NeuroCHARGE (12,385) consortia. Tests for kidney outcomes were conducted in up to 67,093 participants from the CKDGen consortium. PREDICTOR: We used 19 kidney SNPs and 64 vascular SNPs. OUTCOMES & MEASUREMENTS: Vascular outcomes tested were blood pressure, coronary artery disease, carotid intima-media thickness, pulse wave velocity, retinal venular caliber, and brain white matter lesions. Kidney outcomes were estimated glomerular filtration rate and albuminuria. RESULTS: In general, we found that kidney disease variants were not associated with vascular phenotypes (127 of 133 tests were nonsignificant). The one exception was rs653178 near SH2B3 (SH2B adaptor protein 3), which showed direction-consistent association with systolic (P = 9.3 ×10(-10)) and diastolic (P = 1.6 ×10(-14)) blood pressure and coronary artery disease (P = 2.2 ×10(-6)), all previously reported. Similarly, the 64 SNPs associated with vascular phenotypes were not associated with kidney phenotypes (187 of 192 tests were nonsignificant), with the exception of 2 high-correlated SNPs at the SH2B3 locus (P = 1.06 ×10(-07) and P = 7.05 ×10(-08)). LIMITATIONS: The combined effect size of the SNPs for kidney and vascular outcomes may be too low to detect shared genetic associations. CONCLUSIONS: Overall, although we confirmed one locus (SH2B3) as associated with both kidney and cardiovascular disease, our primary findings suggest that there is little overlap between kidney and cardiovascular disease risk variants in the overall population. The reciprocal risks of kidney and cardiovascular disease may not be genetically mediated, but rather a function of the disease milieu itself.
Resumo:
BACKGROUND: Single-nucleotide polymorphisms (SNPs) in immune genes have been associated with susceptibility to invasive mold infection (IMI) among hematopoietic stem cell but not solid-organ transplant (SOT) recipients. METHODS: Twenty-four SNPs from systematically selected genes were genotyped among 1101 SOT recipients (715 kidney transplant recipients, 190 liver transplant recipients, 102 lung transplant recipients, 79 heart transplant recipients, and 15 recipients of other transplants) from the Swiss Transplant Cohort Study. Association between SNPs and the end point were assessed by log-rank test and Cox regression models. Cytokine production upon Aspergillus stimulation was measured by enzyme-linked immunosorbent assay in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and correlated with relevant genotypes. RESULTS: Mold colonization (n = 45) and proven/probable IMI (n = 26) were associated with polymorphisms in the genes encoding interleukin 1β (IL1B; rs16944; recessive mode, P = .001 for colonization and P = .00005 for IMI, by the log-rank test), interleukin 1 receptor antagonist (IL1RN; rs419598; P = .01 and P = .02, respectively), and β-defensin 1 (DEFB1; rs1800972; P = .001 and P = .0002, respectively). The associations with IL1B and DEFB1 remained significant in a multivariate regression model (P = .002 for IL1B rs16944; P = .01 for DEFB1 rs1800972). The presence of 2 copies of the rare allele of rs16944 or rs419598 was associated with reduced Aspergillus-induced interleukin 1β and tumor necrosis factor α secretion by PBMCs. CONCLUSIONS: Functional polymorphisms in IL1B and DEFB1 influence susceptibility to mold infection in SOT recipients. This observation may contribute to individual risk stratification.
Resumo:
Background: Therapy of chronic hepatitis C (CHC) with pegIFNa/ribavirin achieves sustained virologic response (SVR) in ~55%. Pre-activation of the endogenous interferon system in the liver is associated non-response (NR). Recently, genome-wide association studies described associations of allelic variants near the IL28B (IFNλ3) gene with treatment response and with spontaneous clearance of the virus. We investigated if the IL28B genotype determines the constitutive expression of IFN stimulated genes (ISGs) in the liver of patients with CHC. Methods: We genotyped 93 patients with CHC for 3 IL28B single nucleotide polymorphisms (SNPs, rs12979860, rs8099917, rs12980275), extracted RNA from their liver biopsies and quantified the expression of IL28B and of 8 previously identified classifier genes which discriminate between SVR and NR (IFI44L, RSAD2, ISG15, IFI22, LAMP3, OAS3, LGALS3BP and HTATIP2). Decision tree ensembles in the form of a random forest classifier were used to calculate the relative predictive power of these different variables in a multivariate analysis. Results: The minor IL28B allele (bad risk for treatment response) was significantly associated with increased expression of ISGs, and, unexpectedly, with decreased expression of IL28B. Stratification of the patients into SVR and NR revealed that ISG expression was conditionally independent from the IL28B genotype, i.e. there was an increased expression of ISGs in NR compared to SVR irrespective of the IL28B genotype. The random forest feature score (RFFS) identified IFI27 (RFFS = 2.93), RSAD2 (1.88) and HTATIP2 (1.50) expression and the HCV genotype (1.62) as the strongest predictors of treatment response. ROC curves of the IL28B SNPs showed an AUC of 0.66 with an error rate (ERR) of 0.38. A classifier with the 3 best classifying genes showed an excellent test performance with an AUC of 0.94 and ERR of 0.15. The addition of IL28B genotype information did not improve the predictive power of the 3-gene classifier. Conclusions: IL28B genotype and hepatic ISG expression are conditionally independent predictors of treatment response in CHC. There is no direct link between altered IFNλ3 expression and pre-activation of the endogenous system in the liver. Hepatic ISG expression is by far the better predictor for treatment response than IL28B genotype.
Resumo:
AIMS/HYPOTHESIS: Several susceptibility genes for type 2 diabetes have been discovered recently. Individually, these genes increase the disease risk only minimally. The goals of the present study were to determine, at the population level, the risk of diabetes in individuals who carry risk alleles within several susceptibility genes for the disease and the added value of this genetic information over the clinical predictors. METHODS: We constructed an additive genetic score using the most replicated single-nucleotide polymorphisms (SNPs) within 15 type 2 diabetes-susceptibility genes, weighting each SNP with its reported effect. We tested this score in the extensively phenotyped population-based cross-sectional CoLaus Study in Lausanne, Switzerland (n = 5,360), involving 356 diabetic individuals. RESULTS: The clinical predictors of prevalent diabetes were age, BMI, family history of diabetes, WHR, and triacylglycerol/HDL-cholesterol ratio. After adjustment for these variables, the risk of diabetes was 2.7 (95% CI 1.8-4.0, p = 0.000006) for individuals with a genetic score within the top quintile, compared with the bottom quintile. Adding the genetic score to the clinical covariates improved the area under the receiver operating characteristic curve slightly (from 0.86 to 0.87), yet significantly (p = 0.002). BMI was similar in these two extreme quintiles. CONCLUSIONS/INTERPRETATION: In this population, a simple weighted 15 SNP-based genetic score provides additional information over clinical predictors of prevalent diabetes. At this stage, however, the clinical benefit of this genetic information is limited.
Resumo:
BACKGROUND & AIMS: Hepatitis C virus (HCV) induces chronic infection in 50% to 80% of infected persons; approximately 50% of these do not respond to therapy. We performed a genome-wide association study to screen for host genetic determinants of HCV persistence and response to therapy. METHODS: The analysis included 1362 individuals: 1015 with chronic hepatitis C and 347 who spontaneously cleared the virus (448 were coinfected with human immunodeficiency virus [HIV]). Responses to pegylated interferon alfa and ribavirin were assessed in 465 individuals. Associations between more than 500,000 single nucleotide polymorphisms (SNPs) and outcomes were assessed by multivariate logistic regression. RESULTS: Chronic hepatitis C was associated with SNPs in the IL28B locus, which encodes the antiviral cytokine interferon lambda. The rs8099917 minor allele was associated with progression to chronic HCV infection (odds ratio [OR], 2.31; 95% confidence interval [CI], 1.74-3.06; P = 6.07 x 10(-9)). The association was observed in HCV mono-infected (OR, 2.49; 95% CI, 1.64-3.79; P = 1.96 x 10(-5)) and HCV/HIV coinfected individuals (OR, 2.16; 95% CI, 1.47-3.18; P = 8.24 x 10(-5)). rs8099917 was also associated with failure to respond to therapy (OR, 5.19; 95% CI, 2.90-9.30; P = 3.11 x 10(-8)), with the strongest effects in patients with HCV genotype 1 or 4. This risk allele was identified in 24% of individuals with spontaneous HCV clearance, 32% of chronically infected patients who responded to therapy, and 58% who did not respond (P = 3.2 x 10(-10)). Resequencing of IL28B identified distinct haplotypes that were associated with the clinical phenotype. CONCLUSIONS: The association of the IL28B locus with natural and treatment-associated control of HCV indicates the importance of innate immunity and interferon lambda in the pathogenesis of HCV infection.
Resumo:
β-Arrestin2 (ARRB2) is a component of the G-protein-coupled receptor complex and is involved in μ-opioid and dopamine D(2) receptor signaling, two central processes in methadone signal transduction. We analyzed 238 patients in methadone maintenance treatment (MMT) and identified a haplotype block (rs34230287, rs3786047, rs1045280 and rs2036657) spanning almost the entire ARRB2 locus. Although none of these single nucleotide polymorphisms (SNPs) leads to a change in amino-acid sequence, we found that for all the SNPs analyzed, with exception of rs34230287, homozygosity for the variant allele confers a nonresponding phenotype (n=73; rs1045280C and rs2036657G: OR=3.1, 95% CI=1.5-6.3, P=0.004; rs3786047A: OR=2.5, 95% CI=1.2-5.1, P=0.02) also illustrated by a 12-fold shorter period of negative urine screening (P=0.01). The ARRB2 genotype may thus contribute to the interindividual variability in the response to MMT and help to predict response to treatment.
Resumo:
Candidaemia is the fourth most common cause of bloodstream infection, with a high mortality rate of up to 40%. Identification of host genetic factors that confer susceptibility to candidaemia may aid in designing adjunctive immunotherapeutic strategies. Here we hypothesize that variation in immune genes may predispose to candidaemia. We analyse 118,989 single-nucleotide polymorphisms (SNPs) across 186 loci known to be associated with immune-mediated diseases in the largest candidaemia cohort to date of 217 patients of European ancestry and a group of 11,920 controls. We validate the significant associations by comparison with a disease-matched control group. We observe significant association between candidaemia and SNPs in the CD58 (P = 1.97 × 10(-11); odds ratio (OR) = 4.68), LCE4A-C1orf68 (P = 1.98 × 10(-10); OR = 4.25) and TAGAP (P = 1.84 × 10(-8); OR = 2.96) loci. Individuals carrying two or more risk alleles have an increased risk for candidaemia of 19.4-fold compared with individuals carrying no risk allele. We identify three novel genetic risk factors for candidaemia, which we subsequently validate for their role in antifungal host defence.
Resumo:
STUDY OBJECTIVE: Prior research has identified five common genetic variants associated with narcolepsy with cataplexy in Caucasian patients. To replicate and/or extend these findings, we have tested HLA-DQB1, the previously identified 5 variants, and 10 other potential variants in a large European sample of narcolepsy with cataplexy subjects. DESIGN: Retrospective case-control study. SETTING: A recent study showed that over 76% of significant genome-wide association variants lie within DNase I hypersensitive sites (DHSs). From our previous GWAS, we identified 30 single nucleotide polymorphisms (SNPs) with P < 10(-4) mapping to DHSs. Ten SNPs tagging these sites, HLADQB1, and all previously reported SNPs significantly associated with narcolepsy were tested for replication. PATIENTS AND PARTICIPANTS: For GWAS, 1,261 narcolepsy patients and 1,422 HLA-DQB1*06:02-matched controls were included. For HLA study, 1,218 patients and 3,541 controls were included. MEASUREMENTS AND RESULTS: None of the top variants within DHSs were replicated. Out of the five previously reported SNPs, only rs2858884 within the HLA region (P < 2x10(-9)) and rs1154155 within the TRA locus (P < 2x10(-8)) replicated. DQB1 typing confirmed that DQB1*06:02 confers an extraordinary risk (odds ratio 251). Four protective alleles (DQB1*06:03, odds ratio 0.17, DQB1*05:01, odds ratio 0.56, DQB1*06:09 odds ratio 0.21, DQB1*02 odds ratio 0.76) were also identified. CONCLUSION: An overwhelming portion of genetic risk for narcolepsy with cataplexy is found at DQB1 locus. Since DQB1*06:02 positive subjects are at 251-fold increase in risk for narcolepsy, and all recent cases of narcolepsy after H1N1 vaccination are positive for this allele, DQB1 genotyping may be relevant to public health policy.
Resumo:
La recherche biomédicale profite de plus en plus au développement des techniques de séquençage et d'analyse de l'ADN. Les coûts du séquençage ont drastiquement baissés au cours de ces dernières années et les genomes-wides associations studies (GWAS) ont révolutionné l'approche de la recherche génétique en mettant en évidence associations et single-nucleotide-polymorphisms (SNPs) qui pourraient être importantes pour la susceptibilité à développer des maladies dites communes. La majorité des cancers appartiennent à cette définition de maladie commune, ils sont généralement causés par une accumulation de lésions/mutations de l'ADN aboutissant à une perte de contrôle de la prolifération et du cycle cellulaire. Ces mutations peuvent être héréditaires, acquises ou une combinaison des deux. Dans la plupart des cancers communs (cancers qui n'ont pas une hérédité familiale importante) les mutations de l'ADN sont souvent amenées par des facteurs tels que inflammation chronique, tabac, virus, exposition aux radiations, aux agents chimiques. Ceci est le cas pour le mélanome également, un cancer de la peau qui est corrélé à l'exposition des rayons UV solaires ou artificiels. Une hypothèse largement acceptée aujourd'hui est que les tumeurs, à travers leur accumulation progressive de mutations somatiques et d'anomalies chromosomiques, finissent par échapper au contrôle exercé par le système immunitaire. Il est par conséquence imaginable que des polymorphismes naturels puissent renforcer ou affaiblir la capacité du système immunitaire à freiner voir arrêter la progression tumorale.
Resumo:
As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus nigra and its hybrids have been extensively planted since the 1800s. Single nucleotide polymorphisms (SNPs) that appeared fixed within each species were characterized by DNA-sequencing pools of pure individuals. Thirty-five of these diagnostic SNPs were employed in a high-throughput assay that genotyped 635 trees of different age classes, sampled from 15 sites with various degrees of anthropogenic disturbance. The degree of admixture within sampled trees was then assessed through Bayesian clustering of genotypes. Hybrids were present in seven of the populations, with 2.4% of all sampled trees showing spontaneous admixture. Sites with hybrids were significantly more disturbed than pure stands, while hybrids comprised both immature juveniles and trees of reproductive age. All three possible F1s were detected. Advanced-generation hybrids were consistently biased towards P. balsamifera regardless of whether hybridization had occurred with P. deltoides or P. nigra. Gene exchange between P. deltoides and P. nigra was not detected beyond the F1 generation; however, detection of a trihybrid demonstrates that even this apparent reproductive isolation does not necessarily result in an evolutionary dead end. Collectively, results demonstrate the natural fertility of hybrid poplars and suggest that introduced genes could potentially affect the genetic integrity of native trees, similar to that arising from introgression between natives.