39 resultados para Récepteur de cytokine
Resumo:
Summary The best described physiological function of low-density lipoproteins (LDL) is to transport cholesterol to target tissues. LDL deliver their cholesterol cargo to cells following their interaction with the LDL receptor. LDL, when their vascular concentrations increase, have also been implicated in pathologies such as atherosclerosis. Among the cell types that are found in blood vessels, endothelial and smooth muscle cells have dominated cellular research on atherosclerotic mechanisms and LDL activation of signaling pathways, while very little is known about adventitial fibroblast activation caused by elevated lipoprotein levels. Since fibroblasts participate in wound repair and since it has recently been recognized that fibroblasts may play pivotal roles in vascular remodeling and repair of injury, we assessed whether lipoproteins affect fibroblast function. We have found that LDL specifically mediate the activation of a class of mitogen-activated protein kinases (MAPKs): the p38 MAPKs. The activation of this pathway in turn modulates cell shape by promoting lamellipodia formation and extensive cell spreading. This is of particular interest because it provides a mechanism by which LDL can promote wound healing or vessel wall remodeling as observed during the development of atherosclerosis. In order to understand the molecular mechanisms by which LDL induce p38 activation we searched for the component in the LDL particle responsible for the induction of this pathway. We found that cholesterol is the major component of lipoprotein particles that mediates their ability to stimulate the p38 MAPK pathway. Furthermore, we investigated the cellular mechanisms underlying the ability of LDL to induce cell shape changes and whether this could participate in wound repair. Our recent data demonstrates that the capacity of LDL to induce fibroblast spreading relies on their ability to stimulate IL-8 secretion, which in turn leads to accelerated wound healing. LDL-induced IL-8 production and subsequent wound closure are impaired upon inhibition of the p38 MAPK pathway indicating that the LDL-induced spreading and accelerated wound sealing rely on the ability of LDL to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Therefore, regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL-cholesterol levels, IL-8 production and extensive remodeling of the vessel wall. Résumé: La fonction physiologique des lipoprotéines à faible densité (LDL) la mieux décrite est celle du transport du cholestérol aux tissus cibles. Les LDL livrent leur cargaison de cholestérol aux cellules après leur interaction avec le récepteur au LDL. Une concentration vasculaire des LDL augmenté est également impliquée dans le développement de l'athérosclérose. Parmi les types de cellule présents dans les vaisseaux sanguins, les cellules endothéliales et les cellules du muscle lisse ont dominé la recherche cellulaire sur les mécanismes athérosclérotiques et sur l'activation par les LDL des voies de signalisation intracellulaire. A l'inverse peu de choses sont connues sur l'activation des fibroblastes de l'adventice par les lipoprotéines. Puisqu'il a été récemment reconnu que les fibroblastes peuvent jouer un rôle central dans la remodélisation vasculaire et la réparation tissulaire, nous avons étudié si les lipoprotéines affectent la fonction des fibroblastes. Nous avons constaté que les LDL activent spécifiquement une classe de protéines kinases: les p38 MAPK (mitogen-activated protein kinases). L'activation de cette voie module à son tour la forme de la cellule en favorisant la formation de lamellipodes et l'agrandissement des cellules. Cela a un intérêt particulier car il fournit un mécanisme par lequel les LDL peuvent promouvoir la cicatrisation ou la remodélisation des parois vasculaires comme observés lors du développement de l'athérosclérose. Pour comprendre les mécanismes moléculaires par lesquels les LDL provoquent l'activation des p38 MAPK, nous avons cherché à identifier les composants dans la particule de LDL responsables de l'induction de cette voie. Nous avons constaté que le cholestérol est l'élément principal des particules de lipoprotéine qui contrôle leur capacité à stimuler la voie des p38 MAPK. En outre, nous avons examiné les mécanismes cellulaires responsables de la capacité des LDL à induire des changements dans la forme des cellules. Nos données récentes démontrent que la capacité des LDL à induire l'agrandissement des cellules, ainsi que leur aptitude à favoriser la cicatrisation, reposant sur leur capacité à stimuler la sécrétiond'IL-8. La production d'IL-8 induite par les LDL est bloquée par l'inhibition de la voie p38 MAPK, ce qui indique que l'étalement des cellules induit par les LDL ainsi que l'accélération de la cicatrisation sont liés à la capacité des LDL à stimuler la sécrétion d'IL8 via l'activation des p38 MAPK. La régulation de la forme et de la migration des fibroblastes par les lipoprotéines peuvent donc participer au développement de l'athérosclérose qui est caractérisée par l'augmentation des niveaux de production de LDL-cholestérol et d'IL-8 ainsi que par une remodélisation augmentée de la paroi du vaisseau.
Resumo:
BACKGROUND: Waddlia chondrophila (W. chondrophila) is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus). This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS: Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i.) and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways. CONCLUSIONS/SIGNIFICANCE: W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.
Resumo:
The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α-mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by -0.921 (±0.858) log(10) copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearson's r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearman's ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2-mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1-infected individuals.
Resumo:
Background: Infection with EBV and a lack in vitamin D may be important environmental triggers of MS. 1,25-(OH)2D3 mediates a shift of antigen presenting cells (APC) and CD4+ T cells to a less inflammatory profile. Although CD8+ T cells do express the vitamin D receptor, a direct effect of 1,25(OH)2D3 on these cells has not been demonstrated until now. Since CD8+ T cells are important immune mediators of the inflammatory response in MS, we examined whether vitamin D directly affects the CD8+ T cell response, and more specifically if it modulates the EBV-specific CD8+ T cell response. Material and Methods: To explore whether the vitamin D status may influence the pattern of the EBV-specific CD8+ T cell response, PBMC of 10 patients with early MS and 10 healthy controls (HC) were stimulated with a pool of immunodominant 8-10 mer peptide epitopes known to elicit CD8+ T cell responses. PBMC were stimulated with this EBV CD8 peptide pool, medium (negative control) or anti- CD3/anti-CD28 beads (positive control). The following assays were performed: ELISPOT to assess the secretion of IFN-gamma by T cells in general; cytometric beads array (CBA) and ELISA to determine whichcytokines were released by EBV-specific CD8+ T cells after six days of culture; and intracellular cytokine staining assay to determine by which subtype of T cells secreted given cytokines. To examine whether vitamin D could directly modulate CD8+ T cell immune responses, we depleted CD4+ T cells using negative selection. Results: We found that pre-treatment of vitamin D had an antiinflammatory action on both EBV-specific CD8+ T cells and on CD3/ CD28-stimulated T cells: secretion of pro-inflammatory cytokines (IFNgamma and TNF-alpha) was decreased, whereas secretion of antiinflammatory cytokines (IL-5 and TGF-beta) was increased. At baseline, CD8+ T cells of early MS patients showed a higher secretion of TNFalpha and lower secretion of IL-5. Addition of vitamin D did not restore the same levels of both cytokines as compared to HC. Vitamin D-pretreated CD8+T cells exhibited a decreased secretion of IFN-gamma and TNF-alpha, even after depletion of CD4+ T cells from culture. Conclusion: Vitamin D has a direct anti-inflammatory effect on CD8+ T cells independently from CD4+ T cells. CD8+ T cells of patients with earlyMS are less responsive to the inflammatory effect of vitamin D than HC, pointing toward an intrinsic dysregulation of CD8+ T cells. The modulation of EBV-specific CD8+T cells by vitaminDsuggests that there may be interplay between these twomajor environmental factors of MS. This study was supported by a grant from the Swiss National Foundation (PP00P3-124893), and by an unrestricted research grant from Bayer to RDP.
Resumo:
AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.
Resumo:
Activation of dendritic cells (DC) by microbial products via Toll-like receptors (TLR) is instrumental in the induction of immunity. In particular, TLR signaling plays a major role in the instruction of Th1 responses. The development of Th2 responses has been proposed to be independent of the adapter molecule myeloid differentiation factor 88 (MyD88) involved in signal transduction by TLRs. In this study we show that flagellin, the bacterial stimulus for TLR5, drives MyD88-dependent Th2-type immunity in mice. Flagellin promotes the secretion of IL-4 and IL-13 by Ag-specific CD4(+) T cells as well as IgG1 responses. The Th2-biased responses are associated with the maturation of DCs, which are shown to express TLR5. Flagellin-mediated DC activation requires MyD88 and induces NF-kappaB-dependent transcription and the production of low levels of proinflammatory cytokines. In addition, the flagellin-specific response is characterized by the lack of secretion of the Th1-promoting cytokine IL-12 p70. In conclusion, this study suggests that flagellin and, more generally, TLR ligands can control Th2 responses in a MyD88-dependent manner.
Resumo:
OBJECTIVES: In patients with septic shock, circulating monocytes become refractory to stimulation with microbial products. Whether this hyporesponsive state is induced by infection or is related to shock is unknown. To address this question, we measured TNF alpha production by monocytes or by whole blood obtained from healthy volunteers (controls), from patients with septic shock, from patients with severe infection (bacterial pneumonia) without shock, and from patients with cardiogenic shock without infection. MEASUREMENTS: The numbers of circulating monocytes, of CD14+ monocytes, and the expression of monocyte CD14 and the LPS receptor, were assessed by flow cytometry. Monocytes or whole blood were stimulated with lipopolysaccharide endotoxin (LPS), heat-killed Escherichia coli or Staphylococcus aureus, and TNF alpha production was measured by bioassay. RESULTS: The number of circulating monocytes, of CD14+ monocytes, and the monocyte CD14 expression were significantly lower in patients with septic shock than in controls, in patients with bacterial pneumonia or in those with cardiogenic shock (p < 0.001). Monocytes or whole blood of patients with septic shock exhibited a profound deficiency of TNF alpha production in response to all stimuli (p < 0.05 compared to controls). Whole blood of patients with cardiogenic shock also exhibited this defect (p < 0.05 compared to controls), although to a lesser extent, despite normal monocyte counts and normal CD14 expression. CONCLUSIONS: Unlike patients with bacterial pneumonia, patients with septic or cardiogenic shock display profoundly defective TNF alpha production in response to a broad range of infectious stimuli. Thus, down-regulation of cytokine production appears to occur in patients with systemic, but not localised, albeit severe, infections and also in patients with non-infectious circulatory failure. Whilst depletion of monocytes and reduced monocyte CD14 expression are likely to be critical components of the hyporesponsiveness observed in patients with septic shock, other as yet unidentified factors are at work in this group and in patients with cardiogenic shock.
Resumo:
To assess the associations between alcohol consumption and cytokine levels (interleukin-1beta - IL-1β; interleukin-6 - IL-6 and tumor necrosis factor-α - TNF-α) in a Caucasian population. Population sample of 2884 men and 3201 women aged 35-75. Alcohol consumption was categorized as nondrinkers, low (1-6 drinks/week), moderate (7-13/week) and high (14+/week). No difference in IL-1β levels was found between alcohol consumption categories. Low and moderate alcohol consumption led to lower IL-6 levels: median (interquartile range) 1.47 (0.70-3.51), 1.41 (0.70-3.32), 1.42 (0.66-3.19) and 1.70 (0.83-4.39) pg/ml for nondrinkers, low, moderate and high drinkers, respectively, p<0.01, but this association was no longer significant after multivariate adjustment. Compared to nondrinkers, moderate drinkers had the lowest odds (Odds ratio=0.86 (0.71-1.03)) of being in the highest quartile of IL-6, with a significant (p<0.05) quadratic trend. Low and moderate alcohol consumption led to lower TNF-α levels: 2.92 (1.79-4.63), 2.83 (1.84-4.48), 2.82 (1.76-4.34) and 3.15 (1.91-4.73) pg/ml for nondrinkers, low, moderate and high drinkers, respectively, p<0.02, and this difference remained borderline significant (p=0.06) after multivariate adjustment. Moderate drinkers had a lower odds (0.81 [0.68-0.98]) of being in the highest quartile of TNF-α. No specific alcoholic beverage (wine, beer or spirits) effect was found. Moderate alcohol consumption is associated with lower levels of IL-6 and (to a lesser degree) of TNF-α, irrespective of the type of alcohol consumed. No association was found between IL-1β levels and alcohol consumption.
Resumo:
More than seventy years after their initial characterisation, the aetiology of inflammatory bowel diseases remains elusive. A recent review evaluating the incidence trends of the last 25 years concluded that an increasing incidence has been observed almost worldwide. A north-south gradient is still found in Europe. Genetic associations are variably reproduced worldwide and indicate a strong impact of environmental factors. Tumour necrosis factor alpha (TNF-alpha) has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). TNF-alpha blockers are biological agents that specifically target this key cytokine in the inflammatory process and have become a mainstay in the therapy of inflammatory bowel diseases. This paper reviews the necessary investigations before using such agents, the use of such agents in pregnancy and lactation, the role of co-immunosuppression, how to monitor efficacy and safety, dose-adaptation, and the decision as to when to switch to another TNF-alpha blocker. Finally it gives recommendations for special situations. Currently there are three TNF-alpha blockers available for clinical use in IBD in Switzerland: infliximab (Remicade), adalimumab (Humira) and certolizumab pegol (Cimzia). Infliximab is a chimeric monoclonal antibody composed of a human IgG1 constant region and a murine variable region and is administered intravenously. Adalimumab is a humanised monoclonal antibody, with both human IgG1 constant and variable regions. Certolizumab pegol is a pegylated, humanised monoclonal anti-TNF fragment antigen binding fragment. Both adalimumab and certolizumab pegol are administered by subcutaneous injection. The efficacy and safety of TNF-alpha blockers in Crohn's disease has been reviewed. The authors conclude that the three above-mentioned agents are effective in luminal Crohn's disease. In fistulizing Crohn's disease, TNF-alpha blockers other than infliximab require additional investigation.
Resumo:
The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8(+) T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8(+) T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8(+) T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8(+) T cells, NY-ESO-1-specific CD8(+) T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8(+) T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1(+) APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8(+) T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8(+) T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8(+) T cell numbers and functions, increasing the likelihood of tumor regression.
Resumo:
The macrophage NLRC4 inflammasome drives potent innate immune responses against Salmonella by eliciting caspase-1-dependent proinflammatory cytokine production (e.g., interleukin-1β [IL-1β]) and pyroptotic cell death. However, the potential contribution of other cell types to inflammasome-mediated host defense against Salmonella was unclear. Here, we demonstrate that neutrophils, typically viewed as cellular targets of IL-1β, themselves activate the NLRC4 inflammasome during acute Salmonella infection and are a major cell compartment for IL-1β production during acute peritoneal challenge in vivo. Importantly, unlike macrophages, neutrophils do not undergo pyroptosis upon NLRC4 inflammasome activation. The resistance of neutrophils to pyroptotic death is unique among inflammasome-signaling cells so far described and allows neutrophils to sustain IL-1β production at a site of infection without compromising the crucial inflammasome-independent antimicrobial effector functions that would be lost if neutrophils rapidly lysed upon caspase-1 activation. Inflammasome pathway modification in neutrophils thus maximizes host proinflammatory and antimicrobial responses during pathogen challenge.
Resumo:
The peroxisome proliferator-activated receptor gamma (PPARgamma) plays a major role in fat tissue development and physiology. Mutations in the gene encoding this receptor have been associated to disorders in lipid metabolism. A thorough investigation of mice in which one PPARgamma allele has been mutated reveals that male PPARgamma heterozygous (PPARgamma +/-) mice exhibit a reduced body size associated with decreased body weight, reflecting lean mass reduction. This phenotype is reproduced when treating the mice with a PPARgamma- specific antagonist. Monosodium glutamate treatment, which induces weight gain and alters body growth in wild-type mice, further aggravates the growth defect of PPARgamma +/- mice. The levels of circulating GH and that of its downstream effector, IGF-I, are not altered in mutant mice. However, the IGF-I mRNA level is decreased in white adipose tissue (WAT) of PPARgamma +/- mice and is not changed by acute administration of recombinant human GH, suggesting an altered GH action in the mutant animals. Importantly, expression of the gene encoding the suppressor of cytokine signaling-2, which is an essential negative regulator of GH signaling, is strongly increased in the WAT of PPARgamma +/- mice. Although the relationship between the altered GH signaling in WAT and reduced body size remains unclear, our results suggest a novel role of PPARgamma in GH signaling, which might contribute to the metabolic disorder affecting insulin signaling in PPARgamma mutant mice.
Resumo:
The inhalation of airborne pollutants, such as asbestos or silica, is linked to inflammation of the lung, fibrosis, and lung cancer. How the presence of pathogenic dust is recognized and how chronic inflammatory diseases are triggered are poorly understood. Here, we show that asbestos and silica are sensed by the Nalp3 inflammasome, whose subsequent activation leads to interleukin-1beta secretion. Inflammasome activation is triggered by reactive oxygen species, which are generated by a NADPH oxidase upon particle phagocytosis. (NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate.) In a model of asbestos inhalation, Nalp3-/- mice showed diminished recruitment of inflammatory cells to the lungs, paralleled by lower cytokine production. Our findings implicate the Nalp3 inflammasome in particulate matter-related pulmonary diseases and support its role as a major proinflammatory "danger" receptor
Resumo:
OBJECTIVE: A distinct subset of proinflammatory CD4+ T cells that produce interleukin-17 was recently identified. These cells are implicated in different autoimmune disease models, such as experimental autoimmune encephalomyelitis and collagen-induced arthritis, but their involvement in human autoimmune disease has not yet been clearly established. The purpose of this study was to assess the frequency and functional properties of Th17 cells in healthy donors and in patients with different autoimmune diseases. METHODS: Peripheral blood was obtained from 10 psoriatic arthritis (PsA), 10 ankylosing spondylitis (AS), 10 rheumatoid arthritis (RA), and 5 vitiligo patients, as well as from 25 healthy donors. Synovial tissue samples from a separate group of patients were also evaluated (obtained as paraffin-embedded sections). Peripheral blood cells were analyzed by multiparameter flow cytometry and immunohistochemistry. Cytokine production was examined by enzyme-linked immunosorbent assay and intracellular cytokine staining using specific monoclonal antibodies. Synovial tissue was examined for infiltrating T cells by immunohistochemical analysis. RESULTS: We found increased numbers of circulating Th17 cells in the peripheral blood of patients with seronegative spondylarthritides (PsA and AS), but not in patients with RA or vitiligo. In addition, Th17 cells from the spondylarthritis patients showed advanced differentiation and were polyfunctional in terms of T cell receptor-driven cytokine production. CONCLUSION: These observations suggest a role of Th17 cells in the pathogenesis of certain human autoimmune disorders, in particular the seronegative spondylarthritides.
Resumo:
SUMMARY : Detailed knowledge of the different components of the immune system is required for the development of new immunotherapeutic strategies. CD4 T lymphocytes represent a highly heterogeneous group of cells characterized by various profiles of cytokine production and effector vs. regulatory functions. They are central players in orchestrating adaptive immune responses: unbalances between the different subtypes can lead either to aggressive autoimmune disorders or can favour the uncontrolled growth of malignancies. In this study we focused on the characterization of human CD4 T cells in advanced stage melanoma patients as well as in patients affected by various forms of autoimmune inflammatory spondyloarthropathies. In melanoma patients we report that a population of FOXP3 CD4 T cells, known as regulatory T cells, is overrepresented in peripheral blood, and even more in tumor-infitrated lymph nodes as well as at tumor sites, as compared to healthy donors. In tumor-infiltrated lymph nodes, but not in normal lymph nodes or in peripheral blood, FOXP3 CD4 T cells feature a highly differentiated phenotype (CD45RA-CCR7+/-), which suggests for a recent encounter with their cognate antigen. FOXP3 CD4 T cells have been described to be an important component of the several known immune escape mechanisms. We demonstrated that FOXP3 CD4 T cells isolated from melanoma patients exert an in vitro suppressive action on autologous CD4 T cells, thus possibly inhibiting an efficient anti-tumor response. Next, we aimed to analyse CD4 T cells at antigen-specific level. In advanced stage melanoma patients, we identified for the first time, using pMHCII multimers, circulating CD4 T cells specific for the melanoma antigen Melan-A, presented by HLA-DQB1 *0602. Interestingly, in a cohort of melanoma patients enrolled in an immunotherapy trails consisting of injection of a Melan-A derived peptide, we did not observe signif cant variations in the ex vivo frequencies of Melan-A specific CD4 T cells, but important differences in the quality of the specific CD4 T cells. In fact, up to 50% of the ex vivo Melan-A/DQ6 specific CD4 T cells displayed a regulatory phenotype and were hypoproliferative before vaccination, while more effector, cytokine-secreting Melan-A/DQ6 specific CD4 T cells were observed after immunization. These observations suggest that peptide vaccination may favourably modify the balance between regulatory and effector tumor-specific CD4 T cells. Finally, we identified another subset of CD4 T cells as possible mediator of pathology in a group of human autoimmune spondyloarthropathies, namely Th17 cells. These cells were recently described to play a critical role in the pathogenesis of some marine models of autommunity. We document an elevated presence of circulating Th17 cells in two members of seronegative spondyloarthropathies, e.g. psoriatic arthritis and ankylosing spondylitis, while we do not observe increased frequencies of Th17 cells in peripheral blood of rheumatoid arthritic patients. In addition, Th17 cells with a more advanced differentiation state (CD45RA-CCR7-CD27-) and polyfunctionality (concomitant secretion of IL-17, IL-2 and TNFα) were observed exclusively in patients with seronegative spondylarthropathies. Together, our observations emphasize the importance of CD4 T cells in various diseases and suggest that immunotherapeutic approaches considering CD4 T cells as targets should be evaluated in the future.