34 resultados para Olive fly.
Resumo:
The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotope analysis of the bulk oil. The fatty acids from samples of olive, pumpkin, sunflower, maize, rape, soybean, and sesame oils were separated by alkaline hydrolysis and derivatized to methyl esters for chemical characterization by capillary gas chromatography/mass spectrometry (GC/MS) prior to isotopic analysis. Enrichment in heavy carbon isotope (C-13) of th, bulk oil and of the individual fatty acids are related to (1) a thermally induced degradation during processing (deodorization, steam washing, or bleaching), (2) hydrolytic rancidity (lipolysis) and oxidative rancidity of the vegetable oils during storage, and (3) the potential blend with refined oil or other vegetable oils. The impurity or admixture of different oils may be assessed from the delta C-13(16:0) VS. delta C-13(18:1) covariations. The fatty acid compositions of Slovenian and Croatian olive oils are compared with those from the most important Mediterranean producer countries (Spain, Italy, Greece, and France).
Resumo:
We address the challenges of treating polarization and covalent interactions in docking by developing a hybrid quantum mechanical/molecular mechanical (QM/MM) scoring function based on the semiempirical self-consistent charge density functional tight-binding (SCC-DFTB) method and the CHARMM force field. To benchmark this scoring function within the EADock DSS docking algorithm, we created a publicly available dataset of high-quality X-ray structures of zinc metalloproteins ( http://www.molecular-modelling.ch/resources.php ). For zinc-bound ligands (226 complexes), the QM/MM scoring yielded a substantially improved success rate compared to the classical scoring function (77.0% vs 61.5%), while, for allosteric ligands (55 complexes), the success rate remained constant (49.1%). The QM/MM scoring significantly improved the detection of correct zinc-binding geometries and improved the docking success rate by more than 20% for several important drug targets. The performance of both the classical and the QM/MM scoring functions compare favorably to the performance of AutoDock4, AutoDock4Zn, and AutoDock Vina.
Resumo:
Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.
Resumo:
Climate change affects the rate of insect invasions as well as the abundance, distribution and impacts of such invasions on a global scale. Among the principal analytical approaches to predicting and understanding future impacts of biological invasions are Species Distribution Models (SDMs), typically in the form of correlative Ecological Niche Models (ENMs). An underlying assumption of ENMs is that species-environment relationships remain preserved during extrapolations in space and time, although this is widely criticised. The semi-mechanistic modelling platform, CLIMEX, employs a top-down approach using species ecophysiological traits and is able to avoid some of the issues of extrapolation, making it highly applicable to investigating biological invasions in the context of climate change. The tephritid fruit flies (Diptera: Tephritidae) comprise some of the most successful invasive species and serious economic pests around the world. Here we project 12 tephritid species CLIMEX models into future climate scenarios to examine overall patterns of climate suitability and forecast potential distributional changes for this group. We further compare the aggregate response of the group against species-specific responses. We then consider additional drivers of biological invasions to examine how invasion potential is influenced by climate, fruit production and trade indices. Considering the group of tephritid species examined here, climate change is predicted to decrease global climate suitability and to shift the cumulative distribution poleward. However, when examining species-level patterns, the predominant directionality of range shifts for 11 of the 12 species is eastward. Most notably, management will need to consider regional changes in fruit fly species invasion potential where high fruit production, trade indices and predicted distributions of these flies overlap.
Resumo:
From 1993 to 2008, criminal investigations were conducted in the western part of Switzerland with special attention to blowfly and flesh fly species in order to estimate the post-mortem interval when requested by the police authorities. Flesh flies were found in only 33 cases out of 160. Five species of the genus Sarcophaga were identified (S. africa, S. argyrostoma, S. caerulescens, S. similis and S. sp.). The main species found on corpses (larval stage) was S. argyrostoma. The thermal constant (K) calculated for this species in Switzerland is 380.6 ± 16.3 (mean ± S.D.) degree-days. With the exception of S. caerulescens, found three times in the larval stage on corpses, the three other species are of minor forensic importance. S. argyrostoma is found during summer and indoors. This species colonises dead bodies, usually the same day as blowfly species, and it could be used to estimate the post-mortem interval. Other species are discussed in the light of current knowledge on their biology and ecology. It is recommended that voucher material be deposited in a museum, allowing further studies by relevant specialists, thereby helping investigators and avoiding misidentifications.
Resumo:
The hypothesis that extravagant ornaments signal parasite resistance has received support in several species for ornamented males but more rarely for ornamented females. However, recent theories have proposed that females should often be under sexual selection, and therefore females may signal the heritable capacity to resist parasites. We investigated this hypothesis in the socially monogamous barn owl, Tyto alba, in which females exhibit on average more and larger black spots on the plumage than males, and in which males were suggested to choose a mate with respect to female plumage spottiness. We hypothesized that the proportion of the plumage surface covered by black spots signals parasite resistance. In line with this hypothesis, we found that the ectoparasitic fly, Carnus hemapterus, was less abundant on young raised by more heavily spotted females and those flies were less fecund. In an experiment, where entire clutches were cross-fostered between nests, we found that the fecundity of the flies collected on nestlings was negatively correlated with the genetic mother's plumage spottiness. These results suggest that the ability to resist parasites covaries with the extent of female plumage spottiness. Among females collected dead along roads, those with a lot of black spots had a small bursa of Fabricius. Given that parasites bigger the development of this immune organ, this observation further suggests that more spotted females are usually less parasitized. The same analyses performed on male plumage spottiness all provided non-significant results. To our knowledge, this study is the first one showing that a heritable secondary sexual characteristics displayed by females reflects parasite resistance.
Resumo:
Repression and activation of gene transcription involves multiprotein complexes that modify chromatin structure. The integration of these complexes at regulatory sites can be assisted by co-factors that link them to DNA-bound transcriptional regulators. In humans, one such co-factor is the herpes simplex virus host-cell factor 1 (HCF-1), which is implicated in both activation and repression of transcription. We show here that disruption of the gene encoding the Drosophila melanogaster homolog of HCF-1, dHCF, leads to a pleiotropic phenotype involving lethality, sterility, small size, apoptosis, and morphological defects. In Drosophila, repressed and activated transcriptional states of cell fate-determining genes are maintained throughout development by Polycomb Group (PcG) and Trithorax Group (TrxG) genes, respectively. dHCF mutant flies display morphological phenotypes typical of TrxG mutants and dHCF interacts genetically with both PcG and TrxG genes. Thus, dHCF inactivation enhances the mutant phenotypes of the Pc PcG as well as brm and mor TrxG genes, suggesting that dHCF possesses Enhancer of TrxG and PcG (ETP) properties. Additionally, dHCF interacts with the previously established ETP gene skd. These pleiotropic phenotypes are consistent with broad roles for dHCF in both activation and repression of transcription during fly development.
Resumo:
Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C(10)OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.
Resumo:
Adoption is frequent in colonial animals where opportunities for dependent young to receive care from nonbiological parents are high. The departure of dependent young from their original family to seek adoption in neighbouring families is thought to be induced by sibling competition for access to limited resources provided by poor-quality parents. We tested this hypothesis in the colonial Alpine swift by manipulating the number of young reared per brood, with the prediction that offspring from enlarged broods switch nests more frequently than those from reduced broods. Although nestling swifts hatch with little locomotor activity, from 20 days until their first flight at 50-70 days they frequently move out of their nests to seek adoption in neighbouring families. Although nestlings reared in experimentally enlarged broods were lighter and their body mass at day 20 after hatching was more variable than in nestlings reared in reduced broods, there was no difference between the two treatments in the frequency of nests switching and in the age when nestlings switched nests for the first time. However, consistent with other evidence that nest switching by nestling swifts evolved as a strategy to reduce ectoparasite load, young from broods with naturally high numbers of the ectoparasitic louse fly Crataerina melbae were more prone to switch nests. This shows that ectoparasitism rather than sibling competition is a key proximate factor promoting the evolution of nest switching in the colonial Alpine swift. (c) 2006 The Association for the Study of Animal Behaviour Published by Elsevier Ltd. All rights reserved.
Resumo:
ABSTRACT : Gene duplication is a fundamental source of raw material for the origin of genetic novelty. It has been assumed for a long time that DNA-based gene duplication was the only source of new genes. Recently however, RNA-based gene duplication (retroposition) was shown in multiple organisms to contribute significantly to their genetic diversity. This mechanism produces intronless gene copies (retrocopies) that are inserted in random genomic position, independent of the position of the parental source genes. In human, mouse and fruit fly, it was demonstrated that the X-linked genes spawned an excess of functional retroposed gene copies (retrogenes). In human and mouse, the X chromosome also recruited an excess of retrogenes. Here we further characterized these interesting biases related to the X chromosome in mammals. Firstly, we have confirmed presence of the aforementioned biases in dog and opossum genome. Then based on the expression profile of retrogenes during various spermatogenetic stages, we have provided solid evidence that meiotic sex chromosome inactivation (MSCI) is responsible for an excess of retrogenes stemming from the X chromosome. Moreover, we showed that the X-linked genes started to export an excess of retrogenes just after the split of eutherian and marsupial mammalian lineages. This suggests that MSCI has originated around this time as well. More fundamentally, as MSCI reflects the spread of recombination barrier between the X and Y chromosomes during their evolution, our observation allowed us to re-estimate the age of mammalian sex chromosomes. Previous estimates suggested that they emerged in the common ancestor of all mammals (before the split of monotreme lineage); whereas, here we showed that they originated around the split of marsupial and eutherian lineages, after the divergence of monotremes. Thus, the therian (marsupial and eutherian) sex chromosomes are younger than previously thought. Thereafter, we have characterized the bias related to the recruitment of genes to the X chromosome. Sexually antagonistic forces are most likely driving this pattern. Using our limited retrogenes expression data, it is difficult to determine the exact nature of these forces but some conclusions have been made. Lastly, we looked at the history of this biased recruitment: it commenced around the split of marsupial and eutherian lineages (akin to the biased export of genes out of the X). In fact, the sexually antagonistic forces are predicted to appear just around that time as well. Thereby, the history of the recruitment of genes to the X, provides an indirect evidence that these forces are responsible for this bias.
Resumo:
Question: Are maternal effects (i.e. maternal transfer of immune components to their offspring via the placenta or the egg) specifically directed to the offspring on which ectoparasites predictably aggregate? Organisms: The barn owl (Tyto alba) because late-hatched offspring are the main target of the ectoparasitic fly Carnus hemapterus. Hypothesis: Pre-hatching maternal effects enhance parasite resistance of late- compared with early-hatched nestlings. Search method: To disentangle the effect of natal from rearing ranks on parasite intensity, we exchanged hatchlings between nests to allocate early- and late-hatched hatchlings randomly in the within-brood age hierarchy. Result: After controlling for rearing ranks, cross-fostered late-hatched nestlings were less parasitized but lighter than cross-fostered early-hatched nestlings. Conclusion: Pre-hatching maternal effects increase parasite resistance of late-hatched offspring at a growth cost.
Resumo:
The dispersal strategy of ants generally makes use of a nuptial flight to bring together the sexes. The energy necessary to accomplish this flight comes from stored carbohydrates. However, in some species, one of the sexes does not fly and mating occurs in the nest. This is the case in Iridomyrmex humilis and Cataglyphis cursor, in which the virgin queens possess wings but not leave the natal nest. We show in this work that the winged females of these two species accumulate very little carbohydrate during the maturation period occuring between emergence and mating: expressed as a percentage of dry weight at the time of mating, the total carbohydrates reach only 3.2% in I. humilis and 2.1% in C. cursor. In contrast, the males of these species which fly, possess three to four times more carbohydrates (13.0% and 6.2%, respectively). These latter values are very similar to those found for both sexes of species employing nuptial flights, such several species of wood ants (Formica rufa, F. polyctena, F. lugubris ), Lasius (L. niger , L. flavus ) or Myrmica scabrinodis also studied here. It appears that the absence of the mating flight is associated with reduced levels of carbohydrates, specially glycogen
Resumo:
BACKGROUND: Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica. Little is known about the factors underlying such exacerbated clinical presentations. Leishmania RNA virus (LRV) is mainly found within South American Leishmania braziliensis and guyanensis. In a mouse model of L. guyanensis infection, its presence is responsible for an hyper-inflammatory response driven by the recognition of the viral dsRNA genome by the host Toll-like Receptor 3 leading to an exacerbation of the disease. In one instance, LRV was reported outside of South America, namely in the L. major ASKH strain from Turkmenistan, suggesting that LRV appeared before the divergence of Leishmania subgenera. LRV presence inside Leishmania parasites could be one of the factors implicated in disease severity, providing rationale for LRV screening in L. aethiopica. METHODOLOGY/PRINCIPAL FINDINGS: A new LRV member was identified in four L. aethiopica strains (LRV-Lae). Three LRV-Lae genomes were sequenced and compared to L. guyanensis LRV1 and L. major LRV2. LRV-Lae more closely resembled LRV2. Despite their similar genomic organization, a notable difference was observed in the region where the capsid protein and viral polymerase open reading frames overlap, with a unique -1 situation in LRV-Lae. In vitro infection of murine macrophages showed that LRV-Lae induced a TLR3-dependent inflammatory response as previously observed for LRV1. CONCLUSIONS/SIGNIFICANCE: In this study, we report the presence of an immunogenic dsRNA virus in L. aethiopica human isolates. This is the first observation of LRV in Africa, and together with the unique description of LRV2 in Turkmenistan, it confirmed that LRV was present before the divergence of the L. (Leishmania) and (Viannia) subgenera. The potential implication of LRV-Lae on disease severity due to L. aethiopica infections is discussed.