54 resultados para Networks on chip (NoC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new lab-on-a-chip system for electrophysiological measurements on Xenopus oocytes. Xenopus oocytes are widely used host cells in the field of pharmacological studies and drug development. We developed a novel non-invasive technique using immobilized non-devitellinized cells that replaces the traditional "two-electrode voltage-clamp" (TEVC) method. In particular, rapid fluidic exchange was implemented on-chip to allow recording of fast kinetic events of exogenous ion channels expressed in the cell membrane. Reducing fluidic exchange times of extracellular reagent solutions is a great challenge with these large millimetre-sized cells. Fluidic switching is obtained by shifting the laminar flow interface in a perfusion channel under the cell by means of integrated poly-dimethylsiloxane (PDMS) microvalves. Reagent solution exchange times down to 20 ms have been achieved. An on-chip purging system allows to perform complex pharmacological protocols, making the system suitable for screening of ion channel ligand libraries. The performance of the integrated rapid fluidic exchange system was demonstrated by investigating the self-inhibition of human epithelial sodium channels (ENaC). Our results show that the response time of this ion channel to a specific reactant is about an order of magnitude faster than could be estimated with the traditional TEVC technique.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PDMS-based microfluidic devices combined with lanthanide-based immunocomplexes have been successfully tested for the multiplex detection of biomarkers on cancerous tissues, revealing an enhanced sensitivity compared to classical organic dyes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract The object of game theory lies in the analysis of situations where different social actors have conflicting requirements and where their individual decisions will all influence the global outcome. In this framework, several games have been invented to capture the essence of various dilemmas encountered in many common important socio-economic situations. Even though these games often succeed in helping us understand human or animal behavior in interactive settings, some experiments have shown that people tend to cooperate with each other in situations for which classical game theory strongly recommends them to do the exact opposite. Several mechanisms have been invoked to try to explain the emergence of this unexpected cooperative attitude. Among them, repeated interaction, reputation, and belonging to a recognizable group have often been mentioned. However, the work of Nowak and May (1992) showed that the simple fact of arranging the players according to a spatial structure and only allowing them to interact with their immediate neighbors is sufficient to sustain a certain amount of cooperation even when the game is played anonymously and without repetition. Nowak and May's study and much of the following work was based on regular structures such as two-dimensional grids. Axelrod et al. (2002) showed that by randomizing the choice of neighbors, i.e. by actually giving up a strictly local geographical structure, cooperation can still emerge, provided that the interaction patterns remain stable in time. This is a first step towards a social network structure. However, following pioneering work by sociologists in the sixties such as that of Milgram (1967), in the last few years it has become apparent that many social and biological interaction networks, and even some technological networks, have particular, and partly unexpected, properties that set them apart from regular or random graphs. Among other things, they usually display broad degree distributions, and show small-world topological structure. Roughly speaking, a small-world graph is a network where any individual is relatively close, in terms of social ties, to any other individual, a property also found in random graphs but not in regular lattices. However, in contrast with random graphs, small-world networks also have a certain amount of local structure, as measured, for instance, by a quantity called the clustering coefficient. In the same vein, many real conflicting situations in economy and sociology are not well described neither by a fixed geographical position of the individuals in a regular lattice, nor by a random graph. Furthermore, it is a known fact that network structure can highly influence dynamical phenomena such as the way diseases spread across a population and ideas or information get transmitted. Therefore, in the last decade, research attention has naturally shifted from random and regular graphs towards better models of social interaction structures. The primary goal of this work is to discover whether or not the underlying graph structure of real social networks could give explanations as to why one finds higher levels of cooperation in populations of human beings or animals than what is prescribed by classical game theory. To meet this objective, I start by thoroughly studying a real scientific coauthorship network and showing how it differs from biological or technological networks using divers statistical measurements. Furthermore, I extract and describe its community structure taking into account the intensity of a collaboration. Finally, I investigate the temporal evolution of the network, from its inception to its state at the time of the study in 2006, suggesting also an effective view of it as opposed to a historical one. Thereafter, I combine evolutionary game theory with several network models along with the studied coauthorship network in order to highlight which specific network properties foster cooperation and shed some light on the various mechanisms responsible for the maintenance of this same cooperation. I point out the fact that, to resist defection, cooperators take advantage, whenever possible, of the degree-heterogeneity of social networks and their underlying community structure. Finally, I show that cooperation level and stability depend not only on the game played, but also on the evolutionary dynamic rules used and the individual payoff calculations. Synopsis Le but de la théorie des jeux réside dans l'analyse de situations dans lesquelles différents acteurs sociaux, avec des objectifs souvent conflictuels, doivent individuellement prendre des décisions qui influenceront toutes le résultat global. Dans ce cadre, plusieurs jeux ont été inventés afin de saisir l'essence de divers dilemmes rencontrés dans d'importantes situations socio-économiques. Bien que ces jeux nous permettent souvent de comprendre le comportement d'êtres humains ou d'animaux en interactions, des expériences ont montré que les individus ont parfois tendance à coopérer dans des situations pour lesquelles la théorie classique des jeux prescrit de faire le contraire. Plusieurs mécanismes ont été invoqués pour tenter d'expliquer l'émergence de ce comportement coopératif inattendu. Parmi ceux-ci, la répétition des interactions, la réputation ou encore l'appartenance à des groupes reconnaissables ont souvent été mentionnés. Toutefois, les travaux de Nowak et May (1992) ont montré que le simple fait de disposer les joueurs selon une structure spatiale en leur permettant d'interagir uniquement avec leurs voisins directs est suffisant pour maintenir un certain niveau de coopération même si le jeu est joué de manière anonyme et sans répétitions. L'étude de Nowak et May, ainsi qu'un nombre substantiel de travaux qui ont suivi, étaient basés sur des structures régulières telles que des grilles à deux dimensions. Axelrod et al. (2002) ont montré qu'en randomisant le choix des voisins, i.e. en abandonnant une localisation géographique stricte, la coopération peut malgré tout émerger, pour autant que les schémas d'interactions restent stables au cours du temps. Ceci est un premier pas en direction d'une structure de réseau social. Toutefois, suite aux travaux précurseurs de sociologues des années soixante, tels que ceux de Milgram (1967), il est devenu clair ces dernières années qu'une grande partie des réseaux d'interactions sociaux et biologiques, et même quelques réseaux technologiques, possèdent des propriétés particulières, et partiellement inattendues, qui les distinguent de graphes réguliers ou aléatoires. Entre autres, ils affichent en général une distribution du degré relativement large ainsi qu'une structure de "petit-monde". Grossièrement parlant, un graphe "petit-monde" est un réseau où tout individu se trouve relativement près de tout autre individu en termes de distance sociale, une propriété également présente dans les graphes aléatoires mais absente des grilles régulières. Par contre, les réseaux "petit-monde" ont, contrairement aux graphes aléatoires, une certaine structure de localité, mesurée par exemple par une quantité appelée le "coefficient de clustering". Dans le même esprit, plusieurs situations réelles de conflit en économie et sociologie ne sont pas bien décrites ni par des positions géographiquement fixes des individus en grilles régulières, ni par des graphes aléatoires. De plus, il est bien connu que la structure même d'un réseau peut passablement influencer des phénomènes dynamiques tels que la manière qu'a une maladie de se répandre à travers une population, ou encore la façon dont des idées ou une information s'y propagent. Ainsi, durant cette dernière décennie, l'attention de la recherche s'est tout naturellement déplacée des graphes aléatoires et réguliers vers de meilleurs modèles de structure d'interactions sociales. L'objectif principal de ce travail est de découvrir si la structure sous-jacente de graphe de vrais réseaux sociaux peut fournir des explications quant aux raisons pour lesquelles on trouve, chez certains groupes d'êtres humains ou d'animaux, des niveaux de coopération supérieurs à ce qui est prescrit par la théorie classique des jeux. Dans l'optique d'atteindre ce but, je commence par étudier un véritable réseau de collaborations scientifiques et, en utilisant diverses mesures statistiques, je mets en évidence la manière dont il diffère de réseaux biologiques ou technologiques. De plus, j'extrais et je décris sa structure de communautés en tenant compte de l'intensité d'une collaboration. Finalement, j'examine l'évolution temporelle du réseau depuis son origine jusqu'à son état en 2006, date à laquelle l'étude a été effectuée, en suggérant également une vue effective du réseau par opposition à une vue historique. Par la suite, je combine la théorie évolutionnaire des jeux avec des réseaux comprenant plusieurs modèles et le réseau de collaboration susmentionné, afin de déterminer les propriétés structurelles utiles à la promotion de la coopération et les mécanismes responsables du maintien de celle-ci. Je mets en évidence le fait que, pour ne pas succomber à la défection, les coopérateurs exploitent dans la mesure du possible l'hétérogénéité des réseaux sociaux en termes de degré ainsi que la structure de communautés sous-jacente de ces mêmes réseaux. Finalement, je montre que le niveau de coopération et sa stabilité dépendent non seulement du jeu joué, mais aussi des règles de la dynamique évolutionnaire utilisées et du calcul du bénéfice d'un individu.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been proved, for several classes of continuous and discrete dynamical systems, that the presence of a positive (resp. negative) circuit in the interaction graph of a system is a necessary condition for the presence of multiple stable states (resp. a cyclic attractor). A positive (resp. negative) circuit is said to be functional when it "generates" several stable states (resp. a cyclic attractor). However, there are no definite mathematical frameworks translating the underlying meaning of "generates." Focusing on Boolean networks, we recall and propose some definitions concerning the notion of functionality along with associated mathematical results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Game theory is a branch of applied mathematics used to analyze situation where two or more agents are interacting. Originally it was developed as a model for conflicts and collaborations between rational and intelligent individuals. Now it finds applications in social sciences, eco- nomics, biology (particularly evolutionary biology and ecology), engineering, political science, international relations, computer science, and philosophy. Networks are an abstract representation of interactions, dependencies or relationships. Net- works are extensively used in all the fields mentioned above and in many more. Many useful informations about a system can be discovered by analyzing the current state of a network representation of such system. In this work we will apply some of the methods of game theory to populations of agents that are interconnected. A population is in fact represented by a network of players where one can only interact with another if there is a connection between them. In the first part of this work we will show that the structure of the underlying network has a strong influence on the strategies that the players will decide to adopt to maximize their utility. We will then introduce a supplementary degree of freedom by allowing the structure of the population to be modified along the simulations. This modification allows the players to modify the structure of their environment to optimize the utility that they can obtain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.