163 resultados para NERVE BLOCKADE
Resumo:
BACKGROUND: Drusen of the optic disc are associated with slowly progressive optic neuropathy, characterized by accumulation of acellular laminated concretions in the prelaminar portion of the optic nerve. Papillary hemorrhages and vascular shunts have been reported with disc drusen but their frequency and clinical significance is not well known. METHODS: Retrospective study of fundus photographs of 116 patients with disc drusen referred to the National Hospital for Neurology and Neurosurgery, London, between 1965 and 1991. RESULTS: Hemorrhages were found in 23 eyes from 16/116 (13.8%) patients. Most cases (68.8%, 11/16 cases) occurred in patients with buried drusen, and most hemorrhages were deeply located. Vascular shunts were present in 6.9% (8/116 cases), most frequently in patients with exposed drusen (6/8 cases), most being of the venous type (7/8 cases). DISCUSSION: Vascular anomalies are not rare in disc drusen, as 20.7% (24/116 cases) of our patients presented either disc hemorrhages or shunt vessels. Their presence supports the hypothesis of the slowly progressive nature of disc drusen and the more advanced stage of optic neuropathy in such eyes.
Resumo:
Diabetes mellitus (DM) is a major cause of peripheral neuropathy. More than 220 million people worldwide suffer from type 2 DM, which will, in approximately half of them, lead to the development of diabetic peripheral neuropathy. While of significant medical importance, the pathophysiological changes present in DPN are still poorly understood. To get more insight into DPN associated with type 2 DM, we decided to use the rodent model of this form of diabetes, the db/db mice. During the in-vivo conduction velocity studies on these animals, we observed the presence of multiple spiking followed by a single stimulation. This prompted us to evaluate the excitability properties of db/db peripheral nerves. Ex-vivo electrophysiological evaluation revealed a significant increase in the excitability of db/db sciatic nerves. While the shape and kinetics of the compound action potential of db/db nerves were the same as for control nerves, we observed an increase in the after-hyperpolarization phase (AHP) under diabetic conditions. Using pharmacological inhibitors we demonstrated that both the peripheral nerve hyperexcitability (PNH) and the increased AHP were mostly mediated by the decreased activity of Kv1-channels. Importantly, we corroborated these data at the molecular level. We observed a strong reduction of Kv1.2 channel presence in the juxtaparanodal regions of teased fibers in db/db mice as compared to control mice. Quantification of the amount of both Kv1.2 isoforms in DRG neurons and in the endoneurial compartment of peripheral nerve by Western blotting revealed that less mature Kv1.2 was integrated into the axonal membranes at the juxtaparanodes. Our observation that peripheral nerve hyperexcitability present in db/db mice is at least in part a consequence of changes in potassium channel distribution suggests that the same mechanism also mediates PNH in diabetic patients. ∗Current address: Department of Physiology, UCSF, San Francisco, CA, USA.
Resumo:
We have recently reported that the PD-1 and CTLA4 signaling pathways are active in both effector and regulatory T cells, causing profound immune dysfunctions in the tumor microenvironment. In line with this notion, the dual blockade of PD-1- and CTLA4-conveyed signals may exert robust therapeutic effects. Here, we discuss the mechanisms possibly underlying such a synergic interaction.
Resumo:
PURPOSE: To describe a patient with an oculomotor nerve schwannoma who had symptoms of ophthalmoplegic migraine. METHODS: Case report. RESULTS: A 23-year-old woman had a history of recurrent headache accompanied by transient right oculomotor palsy since age 7 years. Ophthalmoplegic migraine was diagnosed. She was subsequently found to have a structural lesion of her right oculomotor nerve on magnetic resonance imaging. The magnetic resonance image characteristics were consistent with schwannoma originating from the oculomotor nerve. CONCLUSIONS: This case illustrates that an intrinsic lesion of the oculomotor nerve (schwannoma) may be associated with a painful relapsing-remitting oculomotor palsy mimicking the clinical syndrome of ophthalmoplegic migraine.
Resumo:
Antagonism of renin-angiotensin-aldosterone system is exerted through angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, renin inhibitors and mineralocorticoid receptor antagonists. These drugs have been successfully tested in numerous trials and in different clinical settings. The original indications of renin-angiotensin-aldosterone system blockers have progressively expanded from the advanced stages to the earlier stages of cardiorenal continuum. To optimize the degree of blockade of renin-angiotensin-aldosterone system, dose uptitrations of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists or the use of a dual blockade, initially identified with the combination of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists, have been proposed. The data from the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET) study do not support this specific dual blockade approach. However, the dual blockade of angiotensin-converting enzyme inhibitors/angiotensin receptor antagonists with direct renin inhibitors is currently under investigation while that based on an aldosterone blocker with any of the previous three drugs requires more evidence beyond heart failure. In this review, we revisited potential advantages of dual blockade of renin-angiotensin-aldosterone system in arterial hypertension and diabetes.
Resumo:
The effects of thyroid hormones on the nervous system are mediated by the presence of nuclear T3 receptors (NT3R). In this study, the expression of NT3R was investigated in spinal cord, dorsal root ganglia (DRG), or sciatic nerve of adult rats after immunostaining with a 2B3-NT3R monoclonal antibody which recognizes both alpha and beta types of NT3R. The specificity of this monoclonal antibody was confirmed by Western blots. The 2B3-NT3R monoclonal antibody recognized one band corresponding to a molecular weight of 57 kDa in extract of spinal cord or DRG. No staining was observed on immunoblot of intact sciatic nerve. In the spinal cord, the nuclei of the neurons and glial cells including both astrocytes and oligodendrocytes exhibited 2B3-NT3R immunoreactivity. While all the nuclei of the DRG sensory neurons expressed the NT3R, all the nuclei of the satellite and Schwann cells were devoid of any immunoreaction. In the sciatic nerve, the nuclei of the Schwann cells also lacked 2B3-NT3R-immunoreactivity. After sciatic nerve transection in vivo, Schwann cell nuclei, which never expressed NT3R in intact nerves of adult rats, displayed a clear 2B3-NT3R immunoreaction in proximal and distal stumps adjacent to the section. Double immunostaining with antibodies raised to 3-sulfogalactosylceramide or S100 confirmed that most of the NT3R containing nuclei belong to Schwann cells. In dissociated cell cultures grown in vitro from sciatic nerves, Schwann cells exhibited 2B3-NT3R immunoreactivity. These data suggest that the inhibition of NT3R expression in Schwann cells ensheathing axons in intact nerve is reversed when the axons are degenerating or lacking.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The acute blood pressure response to an angiotensin converting enzyme inhibitor (enalaprilat) was compared in patients with uncomplicated essential hypertension with that obtained under similar conditions with a calcium entry blocker (nifedipine). The patients were studied after a 3 week washout period. At a 48 h interval, each patient received in randomized order either enalaprilat (5 mg i.v.) or nifedipine (10 mg p.o.). Enalaprilat and nifedipine were equally effective in acutely lowering blood pressure. However, good responders to one agent were not necessarily good responders to the other.
Resumo:
OBJECTIVES: We have reported previously that 80 mg valsartan and 50 mg losartan provide less receptor blockade than 150 mg irbesartan in normotensive subjects. In this study we investigated the importance of drug dosing in mediating these differences by comparing the AT(1)-receptor blockade induced by 3 doses of valsartan with that obtained with 3 other antagonists at given doses. METHODS: Valsartan (80, 160, and 320 mg), 50 mg losartan, 150 mg irbesartan, and 8 mg candesartan were administered to 24 healthy subjects in a randomized, open-label, 3-period crossover study. All doses were given once daily for 8 days. The angiotensin II receptor blockade was assessed with two techniques, the reactive rise in plasma renin activity and an in vitro radioreceptor binding assay that quantified the displacement of angiotensin II by the blocking agents. Measurements were obtained before and 4 and 24 hours after drug intake on days 1 and 8. RESULTS: At 4 and 24 hours, valsartan induced a dose-dependent "blockade" of AT(1) receptors. Compared with other antagonists, 80 mg valsartan and 50 mg losartan had a comparable profile. The 160-mg and 320-mg doses of valsartan blocked AT(1) receptors at 4 hours by 80%, which was similar to the effect of 150 mg irbesartan. At trough, however, the valsartan-induced blockade was slightly less than that obtained with irbesartan. With use of plasma renin activity as a marker of receptor blockade, on day 8, 160 mg valsartan was equivalent to 150 mg irbesartan and 8 mg candesartan. CONCLUSIONS: These results show that the differences in angiotensin II receptor blockade observed with the various AT(1) antagonists are explained mainly by differences in dosing. When 160-mg or 320-mg doses were investigated, the effects of valsartan hardly differed from those obtained with recommended doses of irbesartan and candesartan.
Resumo:
Rrésumé: La première description dans une publication médicale des douleurs neuropathiques remonte à 1872, le Dr S.W. Mitchell les résumant ainsi [...]" la causalgie est la plus terrible des tortures qu'une lésion nerveuse puisse entraîner "[...]. Par définition, la douleur neuropathique est une douleur chronique faisant suite à une lésion ou dysfonction du système nerveux. Malgré les progrès faits dans la compréhension de ce syndrome, le détail des mécanismes impliqués nous échappe encore et son traitement reste insuffisant car moins de 50% des patients sont soulagés par les thérapies actuelles. Différents modèles expérimentaux ont été élaborés chez l'animal de laboratoire, en particulier des modèles de lésion de nerfs périphériques chez le rat, permettant des investigations tant moléculaires que fonctionnelles des mécanismes impliqués dans le développement de ces douleurs. En revanche, peu de modèles existent chez la souris, alors que cet animal, grâce à la transgénèse, est très fréquemment utilisé pour l'approche fonctionnelle ciblée sur un gène. Dans l'étude présentée ici, nous avons évalué chez la souris C57BL/6 l'adaptation d'un modèle neuropathique, proposé une nouvelle modalité de mesure de la sensibilité douloureuse adaptée à la souris et défini une méthode d'analyse performante des résultats. Ce modèle, dit de lésion avec épargne nerveuse (spared Werve injury, SNI), consiste en la lésion de deux des trois branches du nerf sciatique, soit les nerfs peronier commun et tibial. La troisième branche, le nerf sural est laissé intact et c'est dans le territoire cutané de ce dernier que la sensibilité douloureuse à des stimulations mécaniques est enregistrée. Des filaments calibrés de force croissante sont appliqués sur la surface de la patte impliquée et la fréquence relative de retrait de la patte a été modélisée mathématiquement et analysée par un modèle statistique intégrant tous les paramètres de l'expérience (mixed-effects model). Des variantes chirurgicales lésant séquentiellement les trois branches du nerf sciatique ainsi que la réponse en fonction du sexe de l'animal ont également été évaluées. La lésion SNI entraîne une hypersensibilité mécanique marquée comparativement aux souris avec chirurgie contrôle; cet effet est constant entre les animaux et persiste durant les quatre semaines de l'étude. De subtiles différences entre les variables, y compris une divergence de sensibilité mécanique entre les sexes, ont été démontrées. La nécessité de léser le nerf tibial pour le développement des symptômes a également été documentée par notre méthode d'évaluation et d'analyse. En conclusion, nous avons validé le modèle SNI chez la souris par l'apparition d'un symptôme reproductible et apparenté à l'allodynie mécanique décrite par les patients souffrant de douleurs neuropathiques. Nous avons développé des méthodes d'enregistrement et d'analyse de la sensibilité douloureuse sensibles qui permettent la mise en évidence de facteurs intrinsèques et extrinsèques de variation de la réponse. Le modèle SNI utilisé chez des souris génétiquement modifiées, de par sa précision et reproductibilité, pourra permettre la discrimination de facteurs génétiques et épigénétiques contribuant au développement et à la persistance de douleurs neuropathiques.
Resumo:
Peripheral nerve injuries with loss of nervous tissue are a significant clinical problem and are currently treated using autologous nerve transplants. To avoid the need for donor nerve, which results in additional morbidity such as loss of sensation and scarring, alternative bridging methods have been sought. Recently we showed that an artificial nerve conduit moulded from fibrin glue is biocompatible to nerve regeneration. In this present study, we have used the fibrin conduit or a nerve graft to bridge either a 10 mm or 20 mm sciatic nerve gap and analyzed the muscle recovery in adult rats after 16 weeks. The gastrocnemius muscle weights of the operated side were similar for both gap sizes when treated with nerve graft. In contrast, muscle weight was 48.32 ± 4.96% of the contra-lateral side for the 10 mm gap repaired with fibrin conduit but only 25.20 ± 2.50% for the 20 mm gap repaired with fibrin conduit. The morphology of the muscles in the nerve graft groups showed an intact, ordered structure, with the muscle fibers grouped in fascicles whereas the 20 mm nerve gap fibrin group had a more chaotic appearance. The mean area and diameter of fast type fibers in the 20 mm gap repaired with fibrin conduits were significantly (P<0.01) worse than those of the corresponding 10 mm gap group. In contrast, both gap sizes treated with nerve graft showed similar fiber size. Furthermore, the 10 mm gaps repaired with either nerve graft or fibrin conduit showed similar muscle fiber size. These results indicate that the fibrin conduit can effectively treat short nerve gaps but further modification such as the inclusion of regenerative cells may be required to attain the outcomes of nerve graft for long gaps.
Resumo:
We describe an angiotensin (Ang) II-containing innervation of the kidney. Cryosections of rat, pig and human kidneys were investigated for the presence of Ang II-containing nerve fibers using a mouse monoclonal antibody against Ang II (4B3). Co-staining was performed with antibodies against synaptophysin, tyrosine 3-hydroxylase, and dopamine beta-hydroxylase to detect catecholaminergic efferent fibers and against calcitonin gene-related peptide to detect sensory fibers. Tagged secondary antibodies and confocal light or laser scanning microscopy were used for immunofluorescence detection. Ang II-containing nerve fibers were densely present in the renal pelvis, the subepithelial layer of the urothelium, the arterial nervous plexus, and the peritubular interstitium of the cortex and outer medulla. They were infrequent in central veins and the renal capsule and absent within glomeruli and the renal papilla. Ang II-positive fibers represented phenotypic subgroups of catecholaminergic postganglionic or sensory fibers with different morphology and intrarenal distribution compared to their Ang II-negative counterparts. The Ang II-positive postganglionic fibers were thicker, produced typically fusiform varicosities and preferentially innervated the outer medulla and periglomerular arterioles. Ang II-negative sensory fibers were highly varicose, prevailing in the pelvis and scarce in the renal periphery compared to the rarely varicose Ang II-positive fibers. Neurons within renal microganglia displayed angiotensinergic, cate-cholaminergic, or combined phenotypes. Our results suggest that autonomic fibers may be an independent source of intrarenal Ang II acting as a neuropeptide co-transmitter or neuromodulator. The angiotensinergic renal innervation may play a distinct role in the neuronal control of renal sodium reabsorption, vasomotion and renin secretion.
Resumo:
Recent data indicate that bradykinin participates in the regulation of neonatal glomerular function and also acts as a growth regulator during renal development. The aim of the present study was to investigate the involvement of bradykinin in the maturation of renal function. Bradykinin beta2-receptors of newborn rabbits were inhibited for 4 days by Hoe 140. The animals were treated with 300 microg/kg s.c. Hoe 140 (group Hoe, n = 8) or 0.9% NaCl (group control, n = 8) twice daily. Clearance studies were performed in anesthetized rabbits at the age of 8-9 days. Bradykinin receptor blockade did not impair kidney growth, as demonstrated by similar kidney weights in the two groups, nor did it influence blood pressure. Renal blood flow was higher, while renal vascular resistance and filtration fraction were lower in Hoe 140-treated rabbits. No difference in glomerular filtration rate was observed. The unexpectedly higher renal perfusion observed in group Hoe cannot be explained by the blockade of the known vasodilator and trophic effect of bradykinin. Our results indicate that in intact kallikrein-kinin system is necessary for the normal functional development of the kidney.
Resumo:
PURPOSE: To report a case with anterior and posterior nodules associated with systemic sarcoidosis. METHODS: A patient with decreased vision underwent complete ophthalmologic examination, ultrasound biomicroscopy, fluorescein and indocyanine green (ICG) angiography. RESULTS: The patient presented a nodule of the iris of the OS and of the optic nerves of both eyes. Chest computed tomography and tissue biopsy established the diagnosis. CONCLUSIONS: Fluorescein and ICG angiography are the only objective exams to demonstrate the extent of ocular involvement in a patient with sarcoidosis.
Resumo:
Using autoradiographic techniques carried out under precise conditions we previously demonstrated that both sensory neurons and peripheral glial cells in dorsal root ganglia (DRG) or sciatic nerve, possess specific [125I]-labeled T3 binding sites. Thyroid hormone receptors (TR) include several isoforms (TR alpha(1), TR alpha(2), TR beta(1), TR beta(2...)) The present study demonstrates that while sensory neurons and peripheral glial cells both possess functional TR, they express a differential expression of TR isoforms. Using a panel of antisera to specific for the TR alpha-common (alpha(1) and alpha(2)), TR alpha-1 or TR beta-1 isoforms, we detected TRs isoform localization at the cellular level during DRG and sciatic nerve development and regeneration. Immunohistochemical analysis revealed that during embryonic life, sensory neurons express TR alpha-common and TR beta-1 rather than TR alpha-1. The number of TR alpha-common and TR beta-1 positive neurons as well as the intensity of labeling increased during the first two postnatal weeks and remained more or less stable in adult life. TR alpha-1 immunoreactivity, which was undetectable in embryonic sensory neurons, became discreetly visible in neurons after birth. In developing DRG and sciatic nerves, Schwann cells exhibited TR alpha-common and TR alpha-1 rather than TR beta-1 immunolabeling. The appearance of TR alpha-common and alpha-1 isoform immunoreactivity in the sciatic nerve was restricted to a short period ranging from E17 up to two postnatal weeks. By comparing TR alpha-common and TR alpha-1 immunostaining we can deduce that Schwann cells primarily express TR alpha-1. Afterwards, in adult rat sciatic nerve TR alpha isoforms was no more detected. However transection of sciatic nerve caused a reexpression of TR alpha isoforms in degenerating nerve. The prevalence of TR alpha in Schwann cells in vivo was correlated with in vitro results. The differential expression of TR alpha and beta by sensory neurons and Schwann cells indicates that the feedback regulation of circulating thyroid hormone could occur by binding to either the alpha or beta TR isoforms. Moreover, the presence of multiple receptor isoforms in developing sensory neurons suggests that thyroid hormone uses multiple signaling pathways to regulate DRG and sciatic nerve development.