66 resultados para Machine Diagnostics
Resumo:
Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.
Resumo:
PURPOSE: To assess the inter/intraobserver variability of apparent diffusion coefficient (ADC) measurements in treated hepatic lesions and to compare ADC measurements in the whole lesion and in the area with the most restricted diffusion (MRDA). MATERIALS AND METHODS: Twenty-five patients with treated malignant liver lesions were examined on a 3.0T machine. After agreeing on the best ADC image, two readers independently measured the ADC values in the whole lesion and in the MRDA. These measurements were repeated 1 month later. The Bland-Altman method, Spearman correlation coefficients, and the Wilcoxon signed-rank test were used to evaluate the measurements. RESULTS: Interobserver variability for ADC measurements in the whole lesion and in the MRDA was 0.17 x 10(-3) mm(2)/s [-0.17, +0.17] and 0.43 x 10(-3) mm(2)/s [-0.45, +0.41], respectively. Intraobserver limits of agreement could be as low as [-0.10, +0.12] 10(-3) mm(2)/s and [-0.20, +0.33] 10(-3) mm(2)/s for measurements in the whole lesion and in the MRDA, respectively. CONCLUSION: A limited variability in ADC measurements does exist, and it should be considered when interpreting ADC values of hepatic malignancies. This is especially true for the measurements of the minimal ADC.
Resumo:
BACKGROUND AND PURPOSE: MCI was recently subdivided into sd-aMCI, sd-fMCI, and md-aMCI. The current investigation aimed to discriminate between MCI subtypes by using DTI. MATERIALS AND METHODS: Sixty-six prospective participants were included: 18 with sd-aMCI, 13 with sd-fMCI, and 35 with md-aMCI. Statistics included group comparisons using TBSS and individual classification using SVMs. RESULTS: The group-level analysis revealed a decrease in FA in md-aMCI versus sd-aMCI in an extensive bilateral, right-dominant network, and a more pronounced reduction of FA in md-aMCI compared with sd-fMCI in right inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The comparison between sd-fMCI and sd-aMCI, as well as the analysis of the other diffusion parameters, yielded no significant group differences. The individual-level SVM analysis provided discrimination between the MCI subtypes with accuracies around 97%. The major limitation is the relatively small number of cases of MCI. CONCLUSIONS: Our data show that, at the group level, the md-aMCI subgroup has the most pronounced damage in white matter integrity. Individually, SVM analysis of white matter FA provided highly accurate classification of MCI subtypes.
Resumo:
Over the last three decades, cytogenetic analysis of malignancies has become an integral part of disease evaluation and prediction of prognosis or responsiveness to therapy. In most diagnostic laboratories, conventional karyotyping, in conjunction with targeted fluorescence in situ hybridization analysis, is routinely performed to detect recurrent aberrations with prognostic implications. However, the genetic complexity of cancer cells requires a sensitive genome-wide analysis, enabling the detection of small genomic changes in a mixed cell population, as well as of regions of homozygosity. The advent of comprehensive high-resolution genomic tools, such as molecular karyotyping using comparative genomic hybridization or single-nucleotide polymorphism microarrays, has overcome many of the limitations of traditional cytogenetic techniques and has been used to study complex genomic lesions in, for example, leukemia. The clinical impact of the genomic copy-number and copy-neutral alterations identified by microarray technologies is growing rapidly and genome-wide array analysis is evolving into a diagnostic tool, to better identify high-risk patients and predict patients' outcomes from their genomic profiles. Here, we review the added clinical value of an array-based genome-wide screen in leukemia, and discuss the technical challenges and an interpretation workflow in applying arrays in the acquired cytogenetic diagnostic setting.