125 resultados para Hematologic agents
Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters.
Resumo:
New triruthenium-carbonyl clusters derivatized with glucose-modified bicyclophosphite ligands have been synthesized. These compounds were found to have cytostatic and cytotoxic activity and depending on the number of bicyclophosphite ligands, and could be tuned for either anti-cancer or specific anti-angiogenic activity. While some compounds had a broad cellular toxicity profile in several cell types others showed endothelial cell specific dose-dependent anti-proliferative and anti-migratory efficacy. A profound inhibition of angiogenesis was also observed in the in vivo chicken chorioallantoic membrane (CAM) model, and consequently, these new compounds have considerable potential in drug design, e.g. for the treatment of cancer.
Resumo:
In this review, intratumoral drug disposition will be integrated into the wide range of resistance mechanisms to anticancer agents with particular emphasis on targeted protein kinase inhibitors. Six rules will be established: 1. There is a high variability of extracellular/intracellular drug level ratios; 2. There are three main systems involved in intratumoral drug disposition that are composed of SLC, ABC and XME enzymes; 3. There is a synergistic interplay between these three systems; 4. In cancer subclones, there is a strong genomic instability that leads to a highly variable expression of SLC, ABC or XME enzymes; 5. Tumor-expressed metabolizing enzymes play a role in tumor-specific ADME and cell survival and 6. These three systems are involved in the appearance of resistance (transient event) or in the resistance itself. In addition, this article will investigate whether the overexpression of some ABC and XME systems in cancer cells is just a random consequence of DNA/chromosomal instability, hypo- or hypermethylation and microRNA deregulation, or a more organized modification induced by transposable elements. Experiments will also have to establish if these tumor-expressed enzymes participate in cell metabolism or in tumor-specific ADME or if they are only markers of clonal evolution and genomic deregulation. Eventually, the review will underline that the fate of anticancer agents in cancer cells should be more thoroughly investigated from drug discovery to clinical studies. Indeed, inhibition of tumor expressed metabolizing enzymes could strongly increase drug disposition, specifically in the target cells resulting in more efficient therapies.
Resumo:
Antibody-drug conjugates (ADC) are emerging as powerful treatment strategies with outstanding target-specificity and high therapeutic activity in patients with cancer. Brentuximab vedotin represents a first-in-class ADC directed against CD30(+) malignancies. We hypothesized that its sustained clinical responses could be related to the stimulation of an anticancer immune response. In this study, we demonstrate that the dolastatin family of microtubule inhibitors, from which the cytotoxic component of brentuximab vedotin is derived, comprises potent inducers of phenotypic and functional dendritic cell (DC) maturation. In addition to the direct cytotoxic effect on tumor cells, dolastatins efficiently promoted antigen uptake and migration of tumor-resident DCs to the tumor-draining lymph nodes. Exposure of murine and human DCs to dolastatins significantly increased their capacity to prime T cells. Underlining the requirement of an intact host immune system for the full therapeutic benefit of dolastatins, the antitumor effect was far less pronounced in immunocompromised mice. We observed substantial therapeutic synergies when combining dolastatins with tumor antigen-specific vaccination or blockade of the PD-1-PD-L1 and CTLA-4 coinhibitory pathways. Ultimately, treatment with ADCs using dolastatins induces DC homing and activates cellular antitumor immune responses in patients. Our data reveal a novel mechanism of action for dolastatins and provide a strong rationale for clinical treatment regimens combining dolastatin-based therapies, such as brentuximab vedotin, with immune-based therapies. Cancer Immunol Res; 2(8); 741-55. ©2014 AACR.
Resumo:
The treatment of some cancer patients has shifted from traditional, non-specific cytotoxic chemotherapy to chronic treatment with molecular targeted therapies. Imatinib mesylate, a selective inhibitor of tyrosine kinases (TKIs) is the most prominent example of this new era and has opened the way to the development of several additional TKIs, including sunitinib, nilotinib, dasatinib, sorafenib and lapatinib, in the treatment of various hematological malignancies and solid tumors. All these agents are characterized by an important inter-individual pharmacokinetic variability, are at risk for drug interactions, and are not devoid of toxicity. Additionally, they are administered for prolonged periods, anticipating the careful monitoring of their plasma exposure via Therapeutic Drug Monitoring (TDM) to be an important component of patients' follow-up. We have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 100 microL of plasma for the simultaneous determination of the six major TKIs currently in use. Plasma is purified by protein precipitation and the supernatant is diluted in ammonium formate 20 mM (pH 4.0) 1:2. Reverse-phase chromatographic separation of TKIs is obtained using a gradient elution of 20 mM ammonium formate pH 2.2 and acetonitrile containing 1% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 20 min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effects variability (<9.6%), overall process efficiency (87.1-104.2%), as well as TKIs short- and long-term stability in plasma. The method is precise (inter-day CV%: 1.3-9.4%), accurate (-9.2 to +9.9%) and sensitive (lower limits of quantification comprised between 1 and 10 ng/mL). This is the first broad-range LC-MS/MS assay covering the major currently in-use TKIs. It is an improvement over previous methods in terms of convenience (a single extraction procedure for six major TKIs, reducing significantly the analytical time), sensitivity, selectivity and throughput. It may contribute to filling the current knowledge gaps in the pharmacokinetics/pharmacodynamics relationships of the latest TKIs developed after imatinib and better define their therapeutic ranges in different patient populations in order to evaluate whether a systematic TDM-guided dose adjustment of these anticancer drugs could contribute to minimize the risk of major adverse reactions and to increase the probability of efficient, long lasting, therapeutic response.
Resumo:
For doping control, analyses of samples are generally achieved in two steps: a rapid screening and, in the case of a positive result, a confirmatory analysis. A two-step methodology based on ultra-high-pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was developed to screen and confirm 103 doping agents from various classes (e.g., beta-blockers, stimulants, diuretics, and narcotics). The screening method was presented in a previous article as part I (i.e., Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Part I: screening analysis). For the confirmatory method, basic, neutral and acidic compounds were extracted by a dedicated solid-phase extraction (SPE) in a 96-well plate format and detected by MS in the tandem mode to obtain precursor and characteristic product ions. The mass accuracy and the elemental composition of precursor and product ions were used for compound identification. After validation including matrix effect determination, the method was considered reliable to confirm suspect results without ambiguity according to the positivity criteria established by the World Anti-Doping Agency (WADA). Moreover, an isocratic method was developed to separate ephedrine from its isomer pseudoephedrine and cathine from phenylpropanolamine in a single run, what allowed their direct quantification in urine.
Resumo:
BACKGROUND: Dermatophytes are the main cause of onychomycoses, but various non-dermatophyte filamentous fungi are often isolated from abnormal nails. OBJECTIVE: Our aim was the in situ identification of the fungal infectious agent in 8 cases of onychomycoses which could not be cured after systemic terbinafine and itraconazole treatment. METHODS: Fungal DNA was extracted from nail samples, and infectious fungi were identified by restriction fragment length polymorphism (RFLP) of amplified fungal ribosomal DNA using a previously described PCR/RFLP assay. RESULTS: PCR/RFLP identification of fungi in nails allows the identification of the infectious agent: Fusarium sp., Acremonium sp. and Aspergillus sp. were found as a sole infectious agent in 5, 2 and 1 cases, respectively. CONCLUSIONS: Fusarium spp. and other non-dermatophyte filamentous fungi are especially difficult to cure in onychomycoses utilising standard treatment with terbinafine and itraconazole. PCR fungal identification helps demonstrate the presence of moulds in order to prescribe alternative antifungal treatments.
Resumo:
The progression-free survival rate at 6months (PFS-6) has long been considered the best end-point for assessing the efficacy of new agents in phase II trials in patients with recurrent glioblastoma. However, due to the introduction of antiangiogenic agents in this setting, and their intrinsic propensity to alter neuroradiological disease assessment by producing pseudoregression, any end-point based on neuroradiological modifications should be reconsidered. Further, statistically significant effects on progression-free survival (PFS) only should not automatically be considered reliable evidence of meaningful clinical benefit. In this context, because of its direct and unquestionable clinical relevance, overall survival (OS) represents the gold standard end-point for measuring clinical efficacy, despite the disadvantage that it is influenced by subsequent therapies and usually takes longer time to be evaluated. Therefore, while awaiting novel imaging criteria for response evaluation and/or new imaging tools to distinguish between 'true' and 'pseudo'-responses to antiangiogenic agents, the measurement of OS or OS rates should be considered primary end-points, also in phase II trials with these agents.
Resumo:
CONTEXTE: Les sélectines sont une famille de trois protéines qui règlent la capture et le roulement des leucocytes et qui initient la cascade d'adhésion. Elles contrôlent également la migration des leucocytes en réponse à un stimulus physiologique ou inflammatoire pour atteindre un organe cible. Le rôle des sélectines et des leurs ligands est bien connu dans l'adhésion des leucocytes normaux à l'endothélium; en revanche, la nature des ligands des sélectines exprimés par les cellules leucémiques et le myélome multiple est peu connue. La récente découverte que la E- et la P-sélectine sont exprimées par les cellules endothéliales et du stroma de la moelle osseuse, nous a incité à examiner leur rôle dans les interactions des cellules malignes avec leur environnement médullaire. RÉSULTATS: Les analyses ont été conduites sur les cellules du sang ou de la moelle osseuse prélevées à des patients atteints de leucémie aiguë ou de myélome multiple et sur des lignées cellulaires. Les ligands des sélectines qui ont été identifiés sur les blastes leucémiques ou les plasmocytes, sont « P-selectin glycoprotein ligand-1 » (PSGL-1), CD44, CD43 et l'endoglycan (EGC), ainsi que les saccharides fucosylés sLex et CLA. Nous avons vérifié dans des expériences d'adhésion cellulaire effectuées dans des conditions de flux que ces ligands sont fonctionnels, étant porteurs des sucres mentionnés, et qu'ils sont capables de supporter le roulement cellulaire dépendant des sélectines. De plus, nous avons montré que la liaison de ces ligands génère des signaux intracellulaires favorisant la prolifération et la survie des cellules de myélome. CONCLUSION. Les données présentées ici montrent que la E- et la P- sélectine du microenvironnement médullaire interagissent avec les cellules leucémiques et de myélome multiple, et que ces interactions activent des voies de signalisation contrôlant la prolifération et la survie cellulaire. Ces effets protecteurs sont impliqués dans la persistance de clones cellulaires malins résistant aux traitements et peuvent conduire à la récidive de la maladie. L'inhibition de ces interactions pourrait fournir de nouvelles options thérapeutiques pour le traitement de ces maladies de mauvais pronostic. - BACKGROUND: Selectins are a family of glycoproteins involved in the first steps of the adhesion cascade, tethering and rolling, during which leukocytes sense tissue specific signals and commit the cells to enter in a particular organ or inflammation site. While the role of selectins and their ligands is well established in supporting normal leukocyte adhesion to vascular endothelium, our knowledge of selectin ligands in two hematological malignancies, acute leukemia and multiple myeloma, is incomplete. The recent discovery that E- and P- selectin are also expressed on bone marrow (BM) endothelial and stromal cells, prompted us to investigate a potential role in selectin-mediated interaction of malignant cells with its protective BM microenvironment. RESULTS. Using cells obtained from blood or BM of patients affected by acute myeloid or lymphoblastic leukemia, or multiple myeloma, as well as cell lines, we characterized the expression of selectin ligands on blasts and plasma cells and identified P-selectin glycoprotein ligand-1 (PSGL-1), CD44, CD43 and endoglycan (EGC), as well as sLex/CLA determinants. Rolling assays under flow conditions allowed us to verify that these ligands are functional, i.e. correctly glycosylated and able to support selectin-mediated rolling. Moreover, we demonstrated that these ligands trigger proliferation and pro-survival signals upon engagement on myeloma cells. CONCLUSIONS. Data presented here demonstrate that E- and P-selectin in the BM microenvironment interact with leukemia and myeloma cells, and suggest that they have an impact on proliferation and survival of malignant plasma cells. These protective effects may induce drug resistance in malignant clones, leading to disease relapse. Interfering with these interactions could provide new therapeutic options. - Le corps humain dépend du système immunitaire pour sa protection face aux agressions, notamment des bactéries ou des virus, ou face à une dysfonction de l'organisme. Ce système est composé de plusieurs types cellulaires, regroupés sous le nom de leucocytes, qui participent à son fonctionnement. Ces cellules se développent à partir d'une cellule souche hématopo'iétique commune qui réside dans la moelle osseuse. Comme c'est le cas dans les autres tissus, les cellules du système immunitaire peuvent aussi développer des cancers, appelés tumeurs hématopoïétiques ou tumeurs du sang. Bien que ces maladies puissent être traitées avec succès grâce à de fortes doses de chimiothérapies ou à d'autres moyens comme les greffes, les patients connaissent un fort taux de rechute. La raison de ces récidives est la survie d'une partie des cellules malignes dans la moelle osseuse, où elles reçoivent une protection au traitement par le biais de l'interaction avec d'autres cellules. Les sélectines (E-, P- et L-sélectine) régulent l'interaction des leucocytes avec l'endothélium (la paroi des vaisseaux sanguins), d'autres leucocytes et les plaquettes ; ces interactions surviennent quand les leucocytes atteignent un site d'inflammation ou un organe cible. Dans la moelle osseuse, la E- et la P-sélectine se trouvent sur les cellules de l'endothélium et sur les macrophages, qui sont d'autres leucocytes faisant partie du stroma de la moelle. Elles pourraient être impliquées dans la protection des cellules cancéreuses évoquée plus haut. Les molécules d'adhésion avec lesquelles les sélectines s'associent, autrement dit les ligands des sélectines, sont des glycoprotéines. Ces protéines ont besoin de sucres spécifiques pour acquérir une telle capacité d'adhésion. Dans le cadre de cette thèse, nous avons étudié deux types de cellules extraites du sang et de la moelle osseuse des patients atteints d'une leucémie aiguë (les blastes) ou de myélome multiple (les plasmocytes), et leur capacité à se lier aux sélectines. Nous avons démontré une interaction entre ces cellules malignes et la E- et/ou la P-sélectine, à condition que les ligands soient correctement décorés. De plus, lors que les plasmocytes se lient aux sélectines, une cascade de signaux à l'intérieur des cellules stimule leur prolifération et leur survie. L'ensemble de ces résultats permet l'identification de nouvelles cibles thérapeutiques potentielles de ces hémopathies de mauvais pronostic.
Resumo:
Introduction and Aims: The process of delivering erythropoiesis stimulating agents (ESAs) to hemodialysis patients (HD) is complex. Many European countries are requiring centers to document this process. To date, there has not been any comprehensive description of the operational aspects of ESA delivery in Europe. The objective of the Mercurius study was to describe the entire process of ESA delivery in dialysis centers. In addition, we explored the benefits of less frequent dosing. Methods: A conceptual model was developed to classify the sub-processes in the pharmacy, dialysis unit, waste unit, and back office. Within each dialysis unit activities associated with dose determination, ordering procedures, receipt and storage of ESAs, and ESA administration were measured. Within the pharmacy, ordering from supplier, receiving and storing, and delivering ESA to the dialysis unit were measured. The amount of time and materials associated with waste disposal and back office activities were also observed. We also evaluated the impact of less frequent dosing on the resources required to perform anemia management for HD patients. Structured interviews with staff were used to develop a comprehensive list of processes, sub-processes, and activities that are routinely followed to order, register, administer, and dispose of waste associated with ESAs. Each activity was evaluated to determine if less frequent dosing influenced the amount of resources required. A model was developed to estimate the change in resources consumed using less frequent dosing regimens. Results: Eight centers from 5 European countries (Belgium, France, Italy, Sweden, and Switzerland) participated in the study. The number of HD patients in each center ranged from 42 to 707 (mean=175). Across all of the centers, patients received a variety of dosing regimens (eg, TIW, BIW, QW and Q2W). The mean (±SD) time spent for the pharmacy to order an ESA from the supplier was 6.1 (±8.7) minutes; time spent in the dialysis unit and pharmacy for receiving and storing ESPs was 5.3 (±5.3) and 10.0 (±10.9) minutes, respectively; and time spent administering each injection was 6.4 (±6.5) minutes. Switching from current dosing practices to Q2W could decrease the mean number of syringes used from 12,420 to 5,085 per year. We estimate a reduction in the number of disinfective tissues and liquids of 58% and 71%, respectively by switching from current practice to dosing ESAs Q2W. Conclusions: There was significant variation in the time that it takes to perform routine ESA activities. We estimate that a reduction in resources required to manage anemia can be obtained by reducing the frequency of administration from the current mix of ESAs. These resources could be redeployed for patient care.