127 resultados para GINGIVAL INFLAMMATION
Resumo:
Background and Objectives: Studies show that inflammation can contribute to an increase in resting energy expenditure in patients with chronic kidney disease; however, findings about total energy expenditure (TEE) have not been reported. The aim of this study was to evaluate the effects of inflammation on TEE and physical activity energy expenditure in hemodialysis (HD) patients.Design: This was a cross-sectional study.Setting: This study was conducted from Hopital Edouard Herriot, Lyon, France.Patients: This study included 24 HD patients and 18 healthy subjects.Main Outcome Measure: TEE and step counts were measured over a 7-day period by the SenseWear Pro2 Armband in 24 HD patients (15 patients with C-reactive protein,5 mg/L, aged 67.0 +/- 6 14.7 years, and 9 with C-reactive protein >5 mg/L, aged 69.0 +/- 6 18.0 years) and compared with 18 healthy subjects (62.3 +/- 6 15.3 years).Results: Mean estimated TEE measured with SenseWear Pro2 Armband was significantly lower (25.5 +/- 4.1 kcal/kg/day) in patients with inflammation when compared with those without inflammation (32.0 +/- 6.7 kcal/kg/day) and with healthy subjects (31.8 +/- 6 7.0 kcal/kg/day) (P = .012). There was a difference in the physical activity (step counts) between patient groups (P < .05). Healthy subjects and patients without inflammation walked more (8,107 +/- 5,419 and 6,016 +/- 3,752 steps/day, respectively) as compared with patients with inflammation (2,801 +/- 2,754 steps/day, P = .001).Conclusion: Our findings suggest that patients with inflammation have a lower TEE when compared with healthy subjects and patients without inflammation. TEE is influenced by physical activity because patients with inflammation appear to be less active. (C) 2011 by the National Kidney Foundation, Inc. All rights reserved.
Resumo:
OBJECTIVE: Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS: Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS: Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.
Resumo:
Introduction: The presence of intra-articular basic calcium phosphate (BCP) crystals, including OCP, carbonated-apatite, hydroxyapatite and tricalcium phosphate crystals, is associated with severe osteoarthritis and destructive arthropathies such as Milwaukee shoulder. Although BCP crystals displayed, in vitro, mitogenic, anabolic and catabolic responses, their intra-articular effect was never assessed.Objective: To determine the effects of OCP crystals in joints in vivo.Methods: OCP crystals (200 ug in 20 ml PBS) were injected into the right knee joint (the contra-lateral knee joint injected with 20 ul of PBS serving as a control) of wild-type mice treated or not by the IL1R antagonist Anakinra or mice deficient for the inflammasome proteins ASC and NALP3. 4 days and 17 days after crystal injection, mice were sacrificed and knee joints dissected. Histological scoring for synovial inflammation and characterisation of macrophages, neutrophils and T cells were performed. Technetium (Tc) uptake was measured at 6h, 1 and 4 days after OCP injection. Cartilage degradation was evaluated by Safranin O staining and VDIPEN immunohistochemistry. Intra-articular localisation of injected OCP crystals was evidenced by Von Kossa staining.Results: The intra-articular localisation of injected OCP crystals was evidenced by Von Kossa staining performed on non-decalcified samples embedded in methyl-metacrylate. Injection of OCP crystals into knee joints led at day 4 to an inflammatory response with intense macrophage staining and also some neutrophil recruitment in the synovial membrane. This synovitis was not accompanied by increased Tc uptake into the knee joint, Tc uptake being similar in OCP crystal injected knee or control knee at all time points investigated (6h, 1 day, 4 days). The histological modifications persisted over 17 days, with an additional fibrosis evidenced at this later time-point. The OCP crystal-induced synovitis was totally IL-1a and IL-1 independent as shown by the absence of inhibitory effects of anakinra injected into wild-type mice. Accordingly, OCP crystal-induced synovitis was similar in ASC-/- and NALP3-/- mice as no alterations of inflammation were demonstrated between these mice groups. Concerning cartilage matrix degradation, OCP crystals induced a strong breakdown of proteoglycans 4 and 17 days after injection, as measured by loss of red staining from Safranin O-stained sections of cartilage surfaces. In addition, we also measured advanced cartilage matrix destruction mediated by MMPs, as evidenced by VDIPEN staining of cartilage. OCP-mediated cartilage degradation was similar in all experimental conditions tested (WT+Anakinra, or ASC or NALP3 deficient mice).Conclusion: These data indicate in vivo that the intra-articular presence of OCP crystals is associated with cartilage destruction along with synovial inflammation. This is an interesting and new model of destructive arthropathy related to BCP crystals which will allow to assess new therapies in this disease.
Resumo:
Accumulating evidence suggests that changes in the metabolic signature of astrocytes underlie their response to neuroinflammation, but how proinflammatory stimuli induce these changes is poorly understood. By monitoring astrocytes following acute cortical injury, we identified a differential and region-specific remodeling of their mitochondrial network: while astrocytes within the penumbra of the lesion undergo mitochondrial elongation, those located in the core-the area invaded by proinflammatory cells-experience transient mitochondrial fragmentation. In brain slices, proinflammatory stimuli reproduced localized changes in mitochondrial dynamics, favoring fission over fusion. This effect was triggered by Drp1 phosphorylation and ultimately resulted in reduced respiratory capacity. Furthermore, maintenance of the mitochondrial architecture critically depended on the induction of autophagy. Deletion of Atg7, required for autophagosome formation, prevented the reestablishment of tubular mitochondria, leading to marked reactive oxygen species accumulation and cell death. Thus, our data reveal autophagy to be essential for regenerating astrocyte mitochondrial networks during inflammation.
Resumo:
BACKGROUND: Socioeconomic adversity in early life has been hypothesized to "program" a vulnerable phenotype with exaggerated inflammatory responses, so increasing the risk of developing type 2 diabetes in adulthood. The aim of this study is to test this hypothesis by assessing the extent to which the association between lifecourse socioeconomic status and type 2 diabetes incidence is explained by chronic inflammation. METHODS AND FINDINGS: We use data from the British Whitehall II study, a prospective occupational cohort of adults established in 1985. The inflammatory markers C-reactive protein and interleukin-6 were measured repeatedly and type 2 diabetes incidence (new cases) was monitored over an 18-year follow-up (from 1991-1993 until 2007-2009). Our analytical sample consisted of 6,387 non-diabetic participants (1,818 women), of whom 731 (207 women) developed type 2 diabetes over the follow-up. Cumulative exposure to low socioeconomic status from childhood to middle age was associated with an increased risk of developing type 2 diabetes in adulthood (hazard ratio [HR] = 1.96, 95% confidence interval: 1.48-2.58 for low cumulative lifecourse socioeconomic score and HR = 1.55, 95% confidence interval: 1.26-1.91 for low-low socioeconomic trajectory). 25% of the excess risk associated with cumulative socioeconomic adversity across the lifecourse and 32% of the excess risk associated with low-low socioeconomic trajectory was attributable to chronically elevated inflammation (95% confidence intervals 16%-58%). CONCLUSIONS: In the present study, chronic inflammation explained a substantial part of the association between lifecourse socioeconomic disadvantage and type 2 diabetes. Further studies should be performed to confirm these findings in population-based samples, as the Whitehall II cohort is not representative of the general population, and to examine the extent to which social inequalities attributable to chronic inflammation are reversible. Please see later in the article for the Editors' Summary.
Resumo:
Cataract surgery is often performed in patients suffering from associated pathologies. Our goal is to develop a biodegradable drug delivery system (DDS) combined with the artificial intraocular lens (IOL). DDS were manufactured using poly(D,L-lactide-co-glycolide), or PLGA, and were loaded with triamcinolone acetonide (TA). The loading capacity was approximately 1050 microg of TA per DDS. The higher the molecular weight of PLGA (34,000, 48,000 and 80,000Da), the slower was the release of TA in vitro. Cataract surgery was performed on the right eye of rabbits. IOL was inserted with (i) no DDS, (ii) unloaded DDS PLGA48000, (iii) one loaded DDS PLGA48000, (iv) two loaded DDS. The number of inflammatory cells and the protein concentration were measured in the aqueous humor (AH). Unloaded DDS showed good ocular biocompatibility. One DDS PLGA48000 loaded with TA significantly reduced postoperative ocular inflammation. Two loaded DDS PLGA48000 was even more effective in inhibiting such inflammation. On long-term observation (days 63 and 84), reduction of inflammation could be obtained by insertion of one DDS PLGA48000 and a second DDS PLGA80000. Therefore, our "all in one" system is very promising since it could replace oral treatment and reduce the number of intraocular injections
Resumo:
The peroxisome proliferator-activated receptor gamma (PPARgamma) is highly expressed in the colon mucosa and its activation has been reported to protect against colitis. We studied the involvement of PPARgamma and its heterodimeric partner, the retinoid X receptor (RXR) in intestinal inflammatory responses. PPARgamma(1/)- and RXRalpha(1/)- mice both displayed a significantly enhanced susceptibility to 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis compared with their wild-type littermates. A role for the RXR/PPARgamma heterodimer in the protection against colon inflammation was explored by the use of selective RXR and PPARgamma agonists. TNBS-induced colitis was significantly reduced by the administration of both PPARgamma and RXR agonists. This beneficial effect was reflected by increased survival rates, an improvement of macroscopic and histologic scores, a decrease in tumor necrosis factor alpha and interleukin 1beta mRNA levels, a diminished myeloperoxidase concentration, and reduction of nuclear factor kappaB DNA binding activity, c-Jun NH(2)-terminal kinase, and p38 activities in the colon. When coadministered, a significant synergistic effect of PPARgamma and RXR ligands was observed. In combination, these data demonstrate that activation of the RXR/PPARgamma heterodimer protects against colon inflammation and suggest that combination therapy with both RXR and PPARgamma ligands might hold promise in the clinic due to their synergistic effects.
Resumo:
Background and Aims: Two distinct e ndoscopic phenotypes of E osinophilic Esophagitis (EoE) h ave been identified: t he inflammatory (IP) a nd the stenosing (SP) p henotype. I t is not known whether these EoE-associated phenotypes are reflective of different phases during disease course. We aimed to assess the phenotype a t initial EoE p resentation and d iagnosis and to evaluate if SP increases over time. Methods: R etrospective a nalysis of t he Swiss EoE Database (SEED) extended b y a review of p atients charts, endoscopy and pathology records. Results: F orty-four E oE p atients were a nalyzed (33 males, mean age at index visit 41 ± 14 years, all Caucasians). Median follow-up t ime was 3.1 years (IQR 1-4, r ange 1 -18 years). Median diagnostic delay w as 5 y ears (IQR 2-16, range 0-34 years). A t first diagnosis, 3 2% ( 14/44) o f EoE patients h ad already presented w ith a stenosis. T he mean d iameter o f the stenoses w as 1 0 ± 2 mm, and the mean length was 2 .8 ± 2 .9 cm. Peak e osinophil count d id n ot c hange over t ime (48 ± 39 eos/HPF at index visit vs. 59 ± 41 eos/HPF at end of follow-up, n=44). The risk of the presence of a stenosis at index visit was 0% f or a d isease duration of 0 -4 y ears, 37% f or a d isease duration between 5-10 years and 67% f or a d isease duration >10 years (p = 0.0035, trend test). Conclusions: T he frequency of e sophageal stenoses i s proportional to the disease duration, whereas the inflammatory activity does n ot s ignificantly c hange over t ime. O ur f indings underscore the necessity to reduce diagnostic delay in EoE and to control the underlying inflammatory processes to prevent esophageal remodeling.
Resumo:
The c-Jun-N-terminal kinase signaling pathway (JNK) is highly activated during ischemia and plays an important role in apoptosis and inflammation. We have previously demonstrated that D-JNKI1, a specific JNK inhibitor, is strongly neuroprotective in animal models of stroke. We presently evaluated if D-JNKI1 modulates post-ischemic inflammation such as the activation and accumulation of microglial cells. Outbred CD1 mice were subjected to 45 min middle cerebral artery occlusion (MCAo). D-JNKI1 (0.1 mg/kg) or vehicle (saline) was administered intravenously 3 h after MCAo onset. Lesion size at 48 h was significantly reduced, from 28.2+/-8.5 mm(3) (n=7) to 13.9+/-6.2 mm(3) in the treated group (n=6). Activation of the JNK pathway (phosphorylation of c-Jun) was observed in neurons as well as in Isolectin B4 positive microglia. We quantified activated microglia (CD11b) by measuring the average intensity of CD11b labelling (infra-red emission) within the ischemic tissue. No significant difference was found between groups. Cerebral ischemia was modelled in vitro by subjecting rat organotypic hippocampal slice cultures to oxygen (5%) and glucose deprivation for 30 min. In vitro, D-JNKI1 was found predominantly in NeuN positive neurons of the CA1 region and in few Isolectin B4 positive microglia. Furthermore, 48 h after OGD, microglia were activated whereas resting microglia were found in controls and in D-JNKI1-treated slices. Our study shows that D-JNKI1 reduces the infarct volume 48 h after transient MCAo and does not act on the activation and accumulation of microglia at this time point. In contrast, in vitro data show an indirect effect of D-JNKI1 on the modulation of microglial activation.
Resumo:
Recent evidence suggests that transient hyperglycemia in extremely low birth weight infants is strongly associated with the occurrence of retinopathy of prematurity (ROP). We propose a new model of Neonatal Hyperglycemia-induced Retinopathy (NHIR) that mimics many aspects of retinopathy of prematurity. Hyperglycemia was induced in newborn rat pups by injection of streptozocine (STZ) at post natal day one (P1). At various time points, animals were assessed for vascular abnormalities, neuronal cell death and accumulation and activation of microglial cells. We here report that streptozotocin induced a rapid and sustained increase of glycemia from P2/3 to P6 without affecting rat pups gain weight or necessitating insulin treatment. Retinal vascular area was significantly reduced in P6 hyperglycemic animals compared to control animals. Hyperglycemia was associated with (i) CCL2 chemokine induction at P6, (ii) a significant recruitment of inflammatory macrophages and an increase in total number of Iba+ macrophages/microglia cells in the inner nuclear layer (INL), and (iii) excessive apoptosis in the INL. NHIR thereby reproduces several aspects of ischemic retinopathies, including ROP and diabetic retinopathies, and might be a useful model to decipher hyperglycemia-induced cellular and molecular mechanisms in the small rodent.
Resumo:
Recent advances have stimulated new interest in the area of crystal arthritis, as microcrystals can be considered to be endogenous "danger signals" and are potent stimulators of immune as well as non-immune cells. The best known microcrystals include urate (MSU), and calcium pyrophosphate (CPP) crystals, associated with gout and pseudogout, respectively. Acute inflammation is the hallmark of the acute tissue reaction to crystals in both gout and pseudogout. The mechanisms leading to joint inflammation in these diseases involve first crystal formation and subsequent coating with serum proteins. Crystals can then interact with plasma cell membrane, either directly or via membrane receptors, leading to NLRP3 activation, proteolytic cleavage and maturation of pro-interleukin-1β (pro-IL1β) and secretion of mature IL1β. Once released, this cytokine orchestrates a series of events leading to endothelial cell activation and neutrophil recruitment. Ultimately, gout resolution involves several mechanisms including monocyte differentiation into macrophage, clearance of apoptotic neutrophils by macrophages, production of Transforming Growth Factor (TGF-β) and modification of protein coating on the crystal surface. This review will examine these different steps.
Resumo:
Paradoxically, morbid obesity was suggested to protect from cardiovascular co-morbidities as compared to overweight/obese patients. We hypothesise that this paradox could be inferred to modulation of the "endocannabinoid" system on systemic and subcutaneous adipose tissue (SAT) inflammation. We designed a translational project including clinical and in vitro studies at Geneva University Hospital. Morbid obese subjects (n=11) were submitted to gastric bypass surgery (GBS) and followed up for one year (post-GBS). Insulin resistance and circulating and SAT levels of endocannabinoids, adipocytokines and CC chemokines were assessed pre- and post-GBS and compared to a control group of normal and overweight subjects (CTL) (n=20). In vitro cultures with 3T3-L1 adipocytes were used to validate findings from clinical results. Morbid obese subjects had baseline lower insulin sensitivity and higher hs-CRP, leptin, CCL5 and anandamide (AEA) levels as compared to CTL. GBS induced a massive weight and fat mass loss, improved insulin sensitivity and lipid profile, decreased C-reactive protein, leptin, and CCL2 levels. In SAT, increased expression of resistin, CCL2, CCL5 and tumour necrosis factor and reduced MGLL were shown in morbid obese patients pre-GBS when compared to CTL. GBS increased all endocannabinoids and reduced adipocytokines and CC chemokines. In morbid obese SAT, inverse correlations independent of body mass index were shown between palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA) levels and inflammatory molecules. In vitro, OEA inhibited CCL2 secretion from adipocytes via ERK1/2 activation. In conclusion, GBS was associated with relevant clinical, metabolic and inflammatory improvements, increasing endocannabinoid levels in SAT. OEA directly reduced CCL2 secretion via ERK1/2 activation in adipocytes.
Resumo:
Myocardial infarction (MI) induces a sterile inflammatory response that contributes to adverse cardiac remodeling. The initiating mechanisms of this response remain incompletely defined. We found that necrotic cardiomyocytes released a heat-labile proinflammatory signal activating MAPKs and NF-κB in cardiac fibroblasts, with secondary production of cytokines. This response was abolished in Myd88(-/-) fibroblasts but was unaffected in nlrp3-deficient fibroblasts. Despite MyD88 dependency, the response was TLR independent, as explored in TLR reporter cells, pointing to a contribution of the IL-1 pathway. Indeed, necrotic cardiomyocytes released IL-1α, but not IL-1β, and the immune activation of cardiac fibroblasts was abrogated by an IL-1R antagonist and an IL-1α-blocking Ab. Moreover, immune responses triggered by necrotic Il1a(-/-) cardiomyocytes were markedly reduced. In vivo, mice exposed to MI released IL-1α in the plasma, and postischemic inflammation was attenuated in Il1a(-/-) mice. Thus, our findings identify IL-1α as a crucial early danger signal triggering post-MI inflammation.
Resumo:
OBJECTIVES: This study sought to investigate abnormalities in coronary circulatory function in 2 different disease entities of obese (OB) and morbidly obese (MOB) individuals and to evaluate whether these would differ in severity with different profiles of endocannabinoids, leptin, and C-reactive protein (CRP) plasma levels. BACKGROUND: There is increasing evidence that altered plasma levels of endocannabinoids, leptin, and CRP may affect coronary circulatory function in OB and MOB. METHODS: Myocardial blood flow (MBF) responses to cold pressor test from rest and during pharmacologically induced hyperemia were measured with N-13 ammonia positron emission tomography/computed tomography. Study participants (n = 111) were divided into 4 groups based on their body mass index (BMI) (kg/m(2)): 1) control group (BMI: 20 to 24.9, n = 30); 2) overweight group (BMI: 25 to 29.9, n = 31), 3) OB group (BMI: 30 to 39.9, n = 25); and 4) MOB group (BMI ≥40, n = 25). RESULTS: The cold pressor test-induced change in endothelium-related MBF response (ΔMBF) progressively declined in overweight and OB groups when compared with the control group [median: 0.19 (interquartile range [IQR] 0.08, 0.27) and 0.11 (0.03, 0.17) vs. 0.27 (0.23, 0.38) ml/g/min; p ≤ 0.01, respectively], whereas it did not differ significantly between OB and MOB groups [median: 0.11 (IQR: 0.03, 0.17) and 0.09 (-0.01, 0.19) ml/g/min; p = 0.93]. Compared with control subjects, hyperemic MBF subjects comparably declined in the overweight, OB, and MOB groups [median: 2.40 (IQR 1.92, 2.63) vs. 1.94 (1.65, 2.30), 2.05 (1.67, 2.38), and 2.14 (1.78, 2.76) ml/g/min; p ≤ 0.05, respectively]. In OB individuals, ΔMBF was inversely correlated with increase in endocannabinoid anandamide (r = -0.45, p = 0.044), but not with leptin (r = -0.02, p = 0.946) or with CRP (r = -0.33, p = 0.168). Conversely, there was a significant and positive correlation among ΔMBF and elevated leptin (r = 0.43, p = 0.031) and CRP (r = 0.55, p = 0.006), respectively, in MOB individuals that was not observed for endocannabinoid anandamide (r = 0.07, p = 0.740). CONCLUSIONS: Contrasting associations of altered coronary endothelial function with increases in endocannabinoid anandamide, leptin, and CRP plasma levels identify and characterize OB and MOB as different disease entities affecting coronary circulatory function.