258 resultados para Flow-Assurance
Resumo:
A method of objectively determining imaging performance for a mammography quality assurance programme for digital systems was developed. The method is based on the assessment of the visibility of a spherical microcalcification of 0.2 mm using a quasi-ideal observer model. It requires the assessment of the spatial resolution (modulation transfer function) and the noise power spectra of the systems. The contrast is measured using a 0.2-mm thick Al sheet and Polymethylmethacrylate (PMMA) blocks. The minimal image quality was defined as that giving a target contrast-to-noise ratio (CNR) of 5.4. Several evaluations of this objective method for evaluating image quality in mammography quality assurance programmes have been considered on computed radiography (CR) and digital radiography (DR) mammography systems. The measurement gives a threshold CNR necessary to reach the minimum standard image quality required with regards to the visibility of a 0.2-mm microcalcification. This method may replace the CDMAM image evaluation and simplify the threshold contrast visibility test used in mammography quality.
Resumo:
In this paper, we present and apply a new three-dimensional model for the prediction of canopy-flow and turbulence dynamics in open-channel flow. The approach uses a dynamic immersed boundary technique that is coupled in a sequentially staggered manner to a large eddy simulation. Two different biomechanical models are developed depending on whether the vegetation is dominated by bending or tensile forces. For bending plants, a model structured on the Euler-Bernoulli beam equation has been developed, whilst for tensile plants, an N-pendula model has been developed. Validation against flume data shows good agreement and demonstrates that for a given stem density, the models are able to simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag discontinuity and associated mixing layer.
Resumo:
Low efficiency of transfection is often the limiting factor for acquiring conclusive data in reporter assays. It is especially difficult to efficiently transfect and characterize promoters in primary human cells. To overcome this problem we have developed a system in which reporter gene expression is quantified by flow cytometry. In this system, green fluorescent protein (GFP) reporter constructs are co-transfected with a reference plasmid that codes for the mouse cell surface antigen Thy-1.1 and serves to determine transfection efficiency. Comparison of mean GFP expression of the total transfected cell population with the activity of an analogous luciferase reporter showed that the sensitivity of the two reporter systems is similar. However, because GFP expression can be analyzed at the single-cell level and in the same cells the expression of the reference plasmid can be monitored by two-color fluorescence, the GFP reporter system is in fact more sensitive, particularly in cells which can only be transfected with a low efficiency.
Resumo:
The purpose of this study was to determine the prognostic accuracy of perfusion computed tomography (CT), performed at the time of emergency room admission, in acute stroke patients. Accuracy was determined by comparison of perfusion CT with delayed magnetic resonance (MR) and by monitoring the evolution of each patient's clinical condition. Twenty-two acute stroke patients underwent perfusion CT covering four contiguous 10mm slices on admission, as well as delayed MR, performed after a median interval of 3 days after emergency room admission. Eight were treated with thrombolytic agents. Infarct size on the admission perfusion CT was compared with that on the delayed diffusion-weighted (DWI)-MR, chosen as the gold standard. Delayed magnetic resonance angiography and perfusion-weighted MR were used to detect recanalization. A potential recuperation ratio, defined as PRR = penumbra size/(penumbra size + infarct size) on the admission perfusion CT, was compared with the evolution in each patient's clinical condition, defined by the National Institutes of Health Stroke Scale (NIHSS). In the 8 cases with arterial recanalization, the size of the cerebral infarct on the delayed DWI-MR was larger than or equal to that of the infarct on the admission perfusion CT, but smaller than or equal to that of the ischemic lesion on the admission perfusion CT; and the observed improvement in the NIHSS correlated with the PRR (correlation coefficient = 0.833). In the 14 cases with persistent arterial occlusion, infarct size on the delayed DWI-MR correlated with ischemic lesion size on the admission perfusion CT (r = 0.958). In all 22 patients, the admission NIHSS correlated with the size of the ischemic area on the admission perfusion CT (r = 0.627). Based on these findings, we conclude that perfusion CT allows the accurate prediction of the final infarct size and the evaluation of clinical prognosis for acute stroke patients at the time of emergency evaluation. It may also provide information about the extent of the penumbra. Perfusion CT could therefore be a valuable tool in the early management of acute stroke patients.
Resumo:
1. Wind pollination is thought to have evolved in response to selection for mechanisms to promote pollination success, when animal pollinators become scarce or unreliable. We might thus expect wind-pollinated plants to be less prone to pollen limitation than their insect-pollinated counterparts. Yet, if pollen loads on stigmas of wind-pollinated species decline with distance from pollen donors, seed set might nevertheless be pollen-limited in populations of plants that cannot self-fertilize their progeny, but not in self-compatible hermaphroditic populations.2. Here, we test this hypothesis by comparing pollen limitation between dioecious and hermaphroditic (monoecious) populations of the wind-pollinated herb Mercurialis annua.3. In natural populations, seed set was pollen-limited in low-density patches of dioecious, but not hermaphroditic, M. annua, a finding consistent with patterns of distance-dependent seed set by females in an experimental array. Nevertheless, seed set was incomplete in both dioecious and hermaphroditic populations, even at high local densities. Further, both factors limited the seed set of females and hermaphrodites, after we manipulated pollen and resource availability in a common garden experiment.4. Synthesis. Our results are consistent with the idea that pollen limitation plays a role in the evolution of combined vs. separate sexes in M. annua. Taken together, they point to the potential importance of pollen transfer between flowers on the same plant (geitonogamy) by wind as a mechanism of reproductive assurance and to the dual roles played by pollen and resource availability in limiting seed set. Thus, seed set can be pollen-limited in sparse populations of a wind-pollinated species, where mates are rare or absent, having potentially important demographic and evolutionary implications.
Resumo:
Stable isotope and Ar-40/Ar-39 measurements,were made on samples associated with a major tectonic discontinuity in the Helvetic Alps, the basal thrust of the Diablerets nappe (external zone of the Alpine Belt) in order to determine both the importance of fluids in this thrust zone and the timing of thrusting. A systematic decrease in the delta(18)O values (up to 6 parts per thousand) of calcite, quartz, and white mica exists within a 10- to 70-m-wide zone over a distance of 37 km along the thrust, and they become more pronounced toward the root of the nappe. A similar decrease in the delta(13)C values of calcite is observed only in the deepest sections (up to 3 parts per thousand). The delta D-SMOW (SMOW = standard mean ocean water) values of white mica are -54 parts per thousand +/- 8 parts per thousand (n = 22) and are independent of the distance from the thrust. These variations are interpreted to reflect syntectonic solution reprecipitation during fluid passage along the thrust. The calculated delta(18)O and delta D values (versus SMOW) for the fluid in equilibrium with the analyzed minerals is 12 parts per thousand to 16 parts per thousand and -30 parts per thousand to +5 parts per thousand, respectively, for assumed temperatures of 250 to 450 degrees C. The isotopic and structural data are consistent with fluids derived from the deep-seated roots of the Helvetic nappes where large volumes of Mesozoic sediments were metamorphosed to the amphibolite facies, It is suggested that connate and metamorphic waters, overpressured by rapid tectonic burial in a subductive system escaped by upward infiltration along moderately dipping pathways until they reached the main shear zone at the base of the moving pile, where they were channeled toward the surface, This model also explains the mechanism by which large amounts of fluid were removed from the Mesozoic sediments during Alpine metamorphism. White mica Ar-49/Ar-39 ages vary from 27 Ma far from the Diablerets thrust to 15 Ma along the thrust. An older component is observed in micas far from the thrust, interpreted as a detrital signature, and indicates that regional metamorphic temperatures were less than about 350 degrees C. The;plateau and near plateau ages nearest the thrust are consistent with either neocrystallization of white mica or argon loss by recrystallization during thrusting, which may have been enhanced in the zones of highest fluid flow. The 15 Ma Ar-40/Ar-39 age plateau measured on white mica sampled exactly on the thrust surface dates the end of both fluid flow and tectonic transport.
Resumo:
PURPOSE: Visualization of coronary blood flow by means of a slice-selective inversion pre-pulse in concert with bright-blood coronary MRA. MATERIALS AND METHODS: Coronary magnetic resonance angiography (MRA) of the right coronary artery (RCA) was performed in eight healthy adult subjects on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Medical Systems, Best, NL) using a free-breathing navigator-gated and cardiac-triggered 3D steady-state free-precession (SSFP) sequence with radial k-space sampling. Imaging was performed with and without a slice-selective inversion pre-pulse, which was positioned along the main axis of the coronary artery but perpendicular to the imaging volume. Objective image quality parameters such as SNR, CNR, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: In contrast to conventional bright-blood 3D coronary MRA, the selective inversion pre-pulse provided a direct measure of coronary blood flow. In addition, CNR between the RCA and right ventricular blood pool was increased and the vessels had a tendency towards better delineation. Blood SNR and CNR between right coronary blood and epicardial fat were comparable in both sequences. CONCLUSION: The combination of a free-breathing navigator-gated and cardiac-triggered 3D SSFP sequence with a slice-selective inversion pre-pulse allows for direct and directional visualization of coronary blood flow with the additional benefit of improved contrast between coronary and right ventricular blood pool.
Ambient vertical flow in long-screen wells: a case study in the Fontainebleau Sands Aquifer (France)
Resumo:
A tritium (H-3) profile was constructed in a long-screened well (LSW) of the Fontainebleau Sands Aquifer (France), and the data were combined with temperature logs to gain insight into the potential effects of the ambient vertical flow (AVF) of water through the well on the natural aquifer stratification. AVF is commonly taken into account in wells located in fracture aquifers or intercepting two different aquifers with distinct hydraulic heads. However, due to the vertical hydraulic gradient of the flow lines intercepted by wells, AVF of groundwater is a common process within any type of aquifer. The detection of 3H in the deeper parts of the studied well ( approximate depth 50m), where H-3-free groundwater is expected, indicates that shallow young water is being transported downwards through the well itself. The temperature logs show a nearly zero gradient with depth, far below the mean geothermal gradient in sedimentary basins. The results show that the age distribution of groundwater samples might be biased in relation to the age distribution in the surroundings of the well. The use of environmental tracers to investigate aquifer properties, particularly in LSWs, is then limited by the effects of the AVF of water that naturally occurs through the well.
Resumo:
INTRODUCTION: The phase III EORTC 22033-26033/NCIC CE5 intergroup trial compares 50.4 Gy radiotherapy with up-front temozolomide in previously untreated low-grade glioma. We describe the digital EORTC individual case review (ICR) performed to evaluate protocol radiotherapy (RT) compliance. METHODS: Fifty-eight institutions were asked to submit 1-2 randomly selected cases. Digital ICR datasets were uploaded to the EORTC server and accessed by three central reviewers. Twenty-seven parameters were analysed including volume delineation, treatment planning, organ at risk (OAR) dosimetry and verification. Consensus reviews were collated and summary statistics calculated. RESULTS: Fifty-seven of seventy-two requested datasets from forty-eight institutions were technically usable. 31/57 received a major deviation for at least one section. Relocation accuracy was according to protocol in 45. Just over 30% had acceptable target volumes. OAR contours were missing in an average of 25% of cases. Up to one-third of those present were incorrectly drawn while dosimetry was largely protocol compliant. Beam energy was acceptable in 97% and 48 patients had per protocol beam arrangements. CONCLUSIONS: Digital RT plan submission and review within the EORTC 22033-26033 ICR provide a solid foundation for future quality assurance procedures. Strict evaluation resulted in overall grades of minor and major deviation for 37% and 32%, respectively.