316 resultados para Congenital aortic valve stenosis
Resumo:
IMPORTANCE: Owing to a considerable shift toward bioprosthesis implantation rather than mechanical valves, it is expected that patients will increasingly present with degenerated bioprostheses in the next few years. Transcatheter aortic valve-in-valve implantation is a less invasive approach for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING, AND PARTICIPANTS: Correlates for survival were evaluated using a multinational valve-in-valve registry that included 459 patients with degenerated bioprosthetic valves undergoing valve-in-valve implantation between 2007 and May 2013 in 55 centers (mean age, 77.6 [SD, 9.8] years; 56% men; median Society of Thoracic Surgeons mortality prediction score, 9.8% [interquartile range, 7.7%-16%]). Surgical valves were classified as small (≤21 mm; 29.7%), intermediate (>21 and <25 mm; 39.3%), and large (≥25 mm; 31%). Implanted devices included both balloon- and self-expandable valves. MAIN OUTCOMES AND MEASURES: Survival, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83.2% (95% CI, 80.8%-84.7%; 62 death events; 228 survivors). Patients in the stenosis group had worse 1-year survival (76.6%; 95% CI, 68.9%-83.1%; 34 deaths; 86 survivors) in comparison with the regurgitation group (91.2%; 95% CI, 85.7%-96.7%; 10 deaths; 76 survivors) and the combined group (83.9%; 95% CI, 76.8%-91%; 18 deaths; 66 survivors) (P = .01). Similarly, patients with small valves had worse 1-year survival (74.8% [95% CI, 66.2%-83.4%]; 27 deaths; 57 survivors) vs with intermediate-sized valves (81.8%; 95% CI, 75.3%-88.3%; 26 deaths; 92 survivors) and with large valves (93.3%; 95% CI, 85.7%-96.7%; 7 deaths; 73 survivors) (P = .001). Factors associated with mortality within 1 year included having small surgical bioprosthesis (≤21 mm; hazard ratio, 2.04; 95% CI, 1.14-3.67; P = .02) and baseline stenosis (vs regurgitation; hazard ratio, 3.07; 95% CI, 1.33-7.08; P = .008). CONCLUSIONS AND RELEVANCE: In this registry of patients who underwent transcatheter valve-in-valve implantation for degenerated bioprosthetic aortic valves, overall 1-year survival was 83.2%. Survival was lower among patients with small bioprostheses and those with predominant surgical valve stenosis.
Resumo:
BACKGROUND: Transcatheter aortic valve-in-valve implantation is an emerging therapeutic alternative for patients with a failed surgical bioprosthesis and may obviate the need for reoperation. We evaluated the clinical results of this technique using a large, worldwide registry. METHODS AND RESULTS: The Global Valve-in-Valve Registry included 202 patients with degenerated bioprosthetic valves (aged 77.7±10.4 years; 52.5% men) from 38 cardiac centers. Bioprosthesis mode of failure was stenosis (n=85; 42%), regurgitation (n=68; 34%), or combined stenosis and regurgitation (n=49; 24%). Implanted devices included CoreValve (n=124) and Edwards SAPIEN (n=78). Procedural success was achieved in 93.1% of cases. Adverse procedural outcomes included initial device malposition in 15.3% of cases and ostial coronary obstruction in 3.5%. After the procedure, valve maximum/mean gradients were 28.4±14.1/15.9±8.6 mm Hg, and 95% of patients had ≤+1 degree of aortic regurgitation. At 30-day follow-up, all-cause mortality was 8.4%, and 84.1% of patients were at New York Heart Association functional class I/II. One-year follow-up was obtained in 87 patients, with 85.8% survival of treated patients. CONCLUSIONS: The valve-in-valve procedure is clinically effective in the vast majority of patients with degenerated bioprosthetic valves. Safety and efficacy concerns include device malposition, ostial coronary obstruction, and high gradients after the procedure.
Resumo:
Transapical aortic valve implantation is indicated in high-risk patients with aortic stenosis and peripheral vascular disease requiring aortic valve replacement. Minimally invasive direct coronary artery bypass grafting is also a valid, minimally invasive option for myocardial revascularization in patients with critical stenosis on the anterior descending coronary artery. Both procedures are performed through a left minithoracotomy, without cardiopulmonary bypass, aortic cross-clamping, and cardioplegic arrest. We describe a successful combined transapical aortic valve implantation and minimally invasive direct coronary bypass in a high-risk patient with left anterior descending coronary artery occlusion and severe aortic valve stenosis.
Resumo:
Transapical transcatheter aortic valve implantation is an emerging technique for high-risk patients with symptomatic aortic valve stenosis, peripheral vascular disease, and severe concomitant comorbidities. However, a previous major surgical intervention involving the left hemithorax and the lung has always been considered a technical surgical challenge or even a potential contraindication for this minimally invasive procedure. With this report, we demonstrate, for the first time, that a previous left pneumonectomy followed by mediastinal radiotherapy does not affect the feasibility of transapical transcatheter aortic valve implantation, and we discuss the preoperative workup and the peculiar intraoperative cardiac imaging and surgical assessment.
Resumo:
AIMS: To evaluate short-term clinical outcomes following transcatheter aortic valve implantation (TAVI) using CE-mark approved devices in Switzerland. METHODS AND RESULTS: The Swiss TAVI registry is a national, prospective, multicentre, monitored cohort study evaluating clinical outcomes in consecutive patients undergoing TAVI at cardiovascular centres in Switzerland. From February 2011 to March 2013, a total of 697 patients underwent TAVI for native aortic valve stenosis (98.1%), degenerative aortic bioprosthesis (1.6%) or severe aortic regurgitation (0.3%). Patients were elderly (82.4±6 years), 52% were females, and the majority highly symptomatic (73.1% NYHA III/IV). Patients with severe aortic stenosis (mean gradient 44.8±17 mmHg, aortic valve area 0.7±0.3 cm²) were either deemed inoperable or at high risk for conventional surgery (STS 8.2%±7). The transfemoral access was the most frequently used (79.1%), followed by transapical (18.1%), direct aortic (1.7%) and subclavian access (1.1%). At 30 days, rates of all-cause mortality, cerebrovascular events and myocardial infarction were 4.8%, 3.3% and 0.4%, respectively. The most frequently observed adverse events were access-related complications (11.8%), permanent pacemaker implantation (20.5%) and bleeding complications (16.6%). The Swiss TAVI registry is registered at ClinicalTrials.gov (NCT01368250). CONCLUSIONS: The Swiss TAVI registry is a national cohort study evaluating consecutive TAVI procedures in Switzerland. This first outcome report provides favourable short-term clinical outcomes in unselected TAVI patients.
Resumo:
BACKGROUND: Aortoplasty has been advocated for moderate dilatation of the ascending aorta associated with aortic valve disease. We report our results with this conservative approach. METHODS: Seventeen consecutive patients with unsupported aortoplasty were reviewed. Twelve patients had aortic valve regurgitation and 5 had stenosis. The aortic wall was analyzed histologically in 14 patients. Follow-up was complete, with a mean time of 6 years (range, 2.3 to 10.5 years). RESULTS: Two patients among the 15 hospital survivors died during follow-up of causes unrelated to aortic pathology. Survival at 7 years was 86.7% (+/- 8.8%). Recurring aortic aneurysms developed in 4 patients after a mean time of 63 months, with an event-free survival at 7 years of 41% (+/- 21%). All of these 4 patients had aortic valve regurgitation and cystic medial necrosis. CONCLUSIONS: The recurrence rate of aneurysms after unsupported aortoplasty and aortic valve replacement is high in patients with aortic regurgitation. This strongly suggests that in these patients, the aortic dilatation is related to an underlying wall deficiency, associated with the aortic valve pathology, rather than to the hemodynamic stress imposed by the aortic valve disease.
Resumo:
PURPOSE OF REVIEW: The safety and efficiency of trans catheter aortic valve implantation (TAVI) has been clearly demonstrated. In high-risk patients, the number of procedures is constantly increasing and in western European countries this procedure is employed in more than 30% of isolated aortic valve replacements. The literature, however, focusing on perioperative aortic root (AoR) rupture is rather limited to just a few reports. The aim of this review is to analyze the pathophysiology of AoR rupture during TAVI, stressing the implications of the morphology of the AoR for this devastating complication. RECENT FINDINGS: Currently, perioperative AoR rupture ranges between 0.5 and 1.5% during TAVI, with almost 100% mortality. Recently, valve oversizing and balloon dilatation in a calcified and small AoR were considered as the most important predictive factors for this complication. SUMMARY: The most fragile unit of the AoR is its anchoring substrate to the ostium of the left ventricle. This membranous structure is not involved in the degenerative process leading to aortic valve stenosis. Due to the TAVI and/or balloon dilatation of the calcium stationed on the three leaflets and their attachment, a lesion may result on this structure. And, as a consequence, there is rupture of the AoR.
Resumo:
BACKGROUND AND AIM OF THE STUDY: Transapical transcatheter aortic valve replacement (TAVR) is a new minimally invasive technique with a known risk of unexpected intra-procedural complications. Nevertheless, the clinical results are good and the limited amount of procedural adverse events confirms the usefulness of a synergistic surgical/anesthesiological management in case of unexpected emergencies. METHODS: A review was made of the authors' four-year database and other available literature to identify major and minor intra-procedural complications occurring during transapical TAVR procedures. All implants were performed under general anesthesia with a balloon-expandable Edwards Sapien stent-valve, and followed international guidelines on indications and techniques. RESULTS: Procedural success rates ranged between 94% and 100%. Life-threatening apical bleeding occurred very rarely (0-5%), and its incidence decreased after the first series of implants. Stent-valve embolization was also rare, with a global incidence ranging from 0-2%, with evidence of improvement after the learning curve. Rates of valve malpositioning ranged from 0% to < 3%, whereas the risk of coronary obstruction ranged from 0% to 3.5%. Aortic root rupture and dissection were dramatic events reported in 0-2% of transapical cases. Stent-valve malfunction was rarely reported (1-2%), whereas the valve-in-valve bailout procedure for malpositioning, malfunctioning or severe paravalvular leak was reported in about 1.0-3.5% of cases. Sudden hemodynamic management and bailout procedures such as valve-in-valve rescue or cannulation for cardiopulmonary bypass were more effective when planned during the preoperative phase. CONCLUSION: Despite attempts to avoid pitfalls, complications during transapical aortic valve procedures still occur. Preoperative strategic planning, including hemodynamic status management, alternative cannulation sites and bailout procedures, are highly recommended, particularly during the learning curve of this technique.
Resumo:
Although surgical aortic valve replacement has been the standard of care for patient with severe aortic stenosis, transcatheter aortic valve implantation (TAVI) is now a fair standard of care for patients not eligible or high risk for surgical treatment. The decision of therapeutic choice between TAVI and surgery considers surgical risk (estimated by the Euro-SCORE and STS-PROM) as well as many parameters that go beyond the assessment of the valvular disease's severity by echocardiography: a multidisciplinary assessment in "Heart Team" is needed to assess each case in all its complexity.
Resumo:
OBJECTIVES: Due to the high prevalence of renal failure in transcatheter aortic valve replacement (TAVR) candidates, a non-contrast MR technique is desirable for pre-procedural planning. We sought to evaluate the feasibility of a novel, non-contrast, free-breathing, self-navigated three-dimensional (SN3D) MR sequence for imaging the aorta from its root to the iliofemoral run-off in comparison to non-contrast two-dimensional-balanced steady-state free-precession (2D-bSSFP) imaging. METHODS: SN3D [field of view (FOV), 220-370 mm(3); slice thickness, 1.15 mm; repetition/echo time (TR/TE), 3.1/1.5 ms; and flip angle, 115°] and 2D-bSSFP acquisitions (FOV, 340 mm; slice thickness, 6 mm; TR/TE, 2.3/1.1 ms; flip angle, 77°) were performed in 10 healthy subjects (all male; mean age, 30.3 ± 4.3 yrs) using a 1.5-T MRI system. Aortic root measurements and qualitative image ratings (four-point Likert-scale) were compared. RESULTS: The mean effective aortic annulus diameter was similar for 2D-bSSFP and SN3D (26.7 ± 0.7 vs. 26.1 ± 0.9 mm, p = 0.23). The mean image quality of 2D-bSSFP (4; IQR 3-4) was rated slightly higher (p = 0.03) than SN3D (3; IQR 2-4). The mean total acquisition time for SN3D imaging was 12.8 ± 2.4 min. CONCLUSIONS: Our results suggest that a novel SN3D sequence allows rapid, free-breathing assessment of the aortic root and the aortoiliofemoral system without administration of contrast medium. KEY POINTS: • The prevalence of renal failure is high among TAVR candidates. • Non-contrast 3D MR angiography allows for TAVR procedure planning. • The self-navigated sequence provides a significantly reduced scanning time.
Resumo:
OBJECTIVES: To determine the prevalence of aortic valve dysfunction, aortic dilation, and aortic valve and ascending aortic intervention in adults with coarctation of the aorta (CoA). BACKGROUND: Aortic valve dysfunction and aortic dilation are rare among children and adolescents with CoA. With longer follow-up, adults may be more likely to have progressive disease. METHODS: We retrospectively reviewed all adults with CoA, repaired or unrepaired, seen at our center between 2004 and 2010. RESULTS: Two hundred sixteen adults (56.0% male) with CoA were identified. Median age at last evaluation was 28.3 (range 18.0 to 75.3) years. Bicuspid aortic valve (BAV) was present in 65.7%. At last follow-up, 3.2% had moderate or severe aortic stenosis, and 3.7% had moderate or severe aortic regurgitation. Dilation of the aortic root or ascending aorta was present in 28.0% and 41.6% of patients, respectively. Moderate or severe aortic root or ascending aortic dilation (z-score > 4) was present in 8.2% and 13.7%, respectively. Patients with BAV were more likely to have moderate or severe ascending aortic dilation compared with those without BAV (19.5% vs. 0%; P < 0.001). Age was associated with ascending aortic dilation (P = 0.04). At most recent follow-up, 5.6% had undergone aortic valve intervention, and 3.2% had aortic root or ascending aortic replacement. CONCLUSION: In adults with CoA, significant aortic valve dysfunction and interventions during early adulthood were uncommon. However, aortic dilation was prevalent, especially of the ascending aorta, in patients with BAV.
Resumo:
Transcatheter stent-valve implantation in stenosed congenital bicuspid aortic valves is under debate. Heavily calcified elliptic bicuspid valves represent a contraindication to catheter-based valve therapies because of a risk of stent-valve displacement, distortion, or malfunctioning after the implantation. In this case report we illustrate our experience with a patient suffering from stenosed congenital bicuspid aortic valve who successfully underwent a transapical 26-mm Edwards Sapien stent-valve (Edwards Lifesciences Inc, Irvine, CA) implantation. Postoperative distortion, malfunctioning, and paravalvular leaks were not detected.
Resumo:
Our experience with the Sapien trans-apical aortic valve (Edwards Lifesciences Inc., Irvine, CA, USA) has been straightforward without per-procedural mortality except in 1/16 consecutive cases who developed non-apical haemorrhage early after valve implantation. We describe the case of an 84-year-old female carrying a very high operative risk (logistic EuroScore of 44%), who underwent a trans-apical stent-valve implantation for severe and symptomatic aortic valve stenosis (23 mm). Due to massive blood loss, an emergency sternotomy and cannulation for cardiopulmonary bypass resuscitation were necessary to treat (without success) an unusual and unexpected subaortic left ventricular free-wall rupture that occurred few minutes after the stent-valve positioning and implantation. To the best of our knowledge, this is the first described case of a left ventricular free-wall rupture occurring after an otherwise non-complicated standard catheter-based aortic valve replacement.
Resumo:
Quadricuspid aortic valve (QAV) is a rare congenital anomaly associated with aortic valve insufficiency and significant morbidity, and requires the replacement or, rarely, the repair of the malfunctioning heart valve. A QAV associated with an ascending aorta aneurysm is an extremely rare anatomic combination with a hypothetical, but not clear, shared embryological etiology. To date, only two cases of type B QAV with ascending aorta aneurysm have been reported. Herein is described the first ever case of a 38-year-old male suffering from severe symptomatic aortic valve regurgitation due to a type A QAV, associated with an ascending aorta aneurism, who underwent a successful combined replacement of the aortic valve and ascending aorta.
Resumo:
Background: Cardiac computed tomographic scans, coronary angiograms, and aortographies are routinely performed in transcatheter heart valve therapies. Consequently, all patients are exposed to multiple contrast injections with a following risk of nephrotoxicity and postoperative renal failure. The transapical aortic valve implantation without angiography can prevent contrast-related complications. Methods: Between November 2008 and November 2009, 30 consecutive high-risk patients (16 female, 53.3%) underwent transapical aortic valve implantation without angiography. The landmarks identification, the stent-valve positioning, and the postoperative control were routinely performed under transesophageal echocardiogram and fluoroscopic visualization without contrast injections. Results: Mean age was 80.1 +/- 8.7 years. Mean valve gradient, aortic orifice area, and ejection fraction were 60.3 +/- 20.9 mm Hg, 0.7 +/- 0.16 cm(2), and 0.526 +/- 0.128, respectively. Risk factors were pulmonary hypertension (60%), peripheral vascular disease (70%), chronic pulmonary disease (50%), previous cardiac surgery (13.3%), and chronic renal insufficiency (40%) (mean blood creatinine and urea levels: 96.8 +/- 54 mu g/dL and 8.45 +/- 5.15 mmol/L). Average European System for Cardiac Operative Risk Evaluation was 32.2 +/- 13.3%. Valve deployment in the ideal landing zone was 96.7% successful and valve embolization occurred once. Thirty-day mortality was 10% (3 patients). Causes of death were the following: intraoperative ventricular rupture (conversion to sternotomy), right ventricular failure, and bilateral pneumonia. Stroke occurred in one patient at postoperative day 9. Renal failure (postoperative mean blood creatinine and urea levels: 91.1 +/- 66.8 mu g/dL and 7.27 +/- 3.45 mmol/L), myocardial infarction, and atrioventricular block were not detected. Conclusions: Transapical aortic valve implantation without angiography requires a short learning curve and can be performed routinely by experienced teams. Our report confirms that this procedure is feasible and safe, and provides good results with low incidence of postoperative renal disorders. (Ann Thorac Surg 2010; 89: 1925-33) (C) 2010 by The Society of Thoracic Surgeons